Increased Ankle Range of Motion Reduces Knee Loads During Landing in Healthy Adults

in Journal of Applied Biomechanics
View More View Less
  • 1 The University of Tennessee
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Decreased dorsiflexion range of motion (DROM) can be modified using static stretching and joint mobilizations and may attenuate known knee anterior cruciate ligament injury risk factors. It is not known how these interventions compare to each other and how they improve knee landing mechanics. This study’s purpose was to determine the immediate effects of static stretching and joint mobilization interventions on DROM measurement changes and right-leg drop jump knee landing mechanics. Eighteen females and 7 males, all recreationally active, completed 2 study sessions. Active and passive DROM, the weight-bearing lunge test, the anterior reach portion of the Star Excursion Balance Test, and a right-leg drop jump landing task were completed before and after the intervention. Change in DROM (ΔDROM) was calculated for DROM assessments between preintervention and postintervention. Pairwise dependent t tests determined no differences in ΔDROM between interventions, and statistical parametric mapping determined increased knee flexion (P = .004) and decreased anterior shear force (P = .015) during landing after both interventions. Increased DROM improves sagittal plane displacement and loading at the knee. Stretching may be a more feasible option in a healthy population for those wanting to maintain range of motion and decrease knee injury risk without physical therapist involvement.

The authors are with the Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee, Knoxville, TN, USA.

Weinhandl (jweinhan@utk.edu) is corresponding author.
  • 1.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):23632370. PubMed ID: 25086064 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT. Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002–2014. Sports Health. 2018;10(6):523531. PubMed ID: 30355175 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: national collegiate athletic association injury surveillance system data update (2004–2005 through 2012–2013). Clin J Sport Med. 2016;26(6):518523. PubMed ID: 27315457 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stanley LE, Kerr ZY, Dompier TP, Padua DA. Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med. 2016;44(6):15651572. PubMed ID: 26940226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Montalvo AM, Schneider DK, Yut L, et al. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br J Sports Med. 2019;53(16):10031012. PubMed ID: 29514822 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sigward SM, Pollard CD. Proximal risk factors for ACL injury: role of the hip joint and musculature. In: Noyes FR, Barber-Westin S, eds. ACL Injuries in the Female Athlete: Causes, Impacts, and Conditioning Programs. Berlin, Heidelberg: Springer; 2018:207223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Garrett WE, Yu B. Anterior cruciate ligament injury mechanisms and risk factors. J Orthop Sports Phys Ther. 2007;37(2):A10A11. PubMed ID: 17366965

  • 9.

    Taylor JB, Nguyen AD, Shultz SJ, Ford KR. Hip biomechanics differ in responders and non-responders to an ACL injury prevention program. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):12361245. PubMed ID: 30259145 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Yang C, Yao W, Garrett WE, et al. Effects of an intervention program on lower extremity biomechanics in stop-jump and side-cutting tasks. Am J Sports Med. 2018;46(12):30143022. PubMed ID: 30148646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Webster KE, Hewett TE. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J Orthop Res. 2018;36(10):26962708. PubMed ID: 29737024 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wahlstedt C, Rasmussen-Barr E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):32023207. PubMed ID: 24923690 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Leppanen M, Pasanen K, Krosshaug T, et al. Sagittal plane hip, knee, and ankle biomechanics and the risk of anterior cruciate ligament injury: a prospective study. Orthop J Sports Med. 2017;5(12):2325967117745487. PubMed ID: 29318174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Howe LP, Bampouras TM, North J, Waldron M. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights. Hum Mov Sci. 2019;64:320328. PubMed ID: 30836206 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mason-Mackay AR, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: a systematic review. J Sci Med Sport. 2017;20(5):451458. PubMed ID: 26117159 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fong CM, Blackburn JT, Norcross MF, McGrath M, Padua DA. Ankle-dorsiflexion range of motion and landing biomechanics. J Athl Train. 2011;46(1):510. PubMed ID: 21214345 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lima YL, Ferreira V, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GPL. The association of ankle dorsiflexion and dynamic knee valgus: a systematic review and meta-analysis. Phys Ther Sport. 2018;29:6169. PubMed ID: 28974358 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hagins M, Pappas E, Kremenic I, Orishimo KF, Rundle A. The effect of an inclined landing surface on biomechanical variables during a jumping task. Clin Biomech. 2007;22(9):10301036. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dill KE, Begalle RL, Frank BS, Zinder SM, Padua DA. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49(6):723732. PubMed ID: 25144599 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sigward SM, Ota S, Powers CM. Predictors of frontal plane knee excursion during a drop land in young female soccer players. J Orthop Sports Phys Ther. 2008;38(11):661667. PubMed ID: 18978451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279287. PubMed ID: 22666642

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Holland CJ, Campbell K, Hutt K. Increased treatment durations lead to greater improvements in non-weight bearing dorsiflexion range of motion for asymptomatic individuals immediately following an anteroposterior grade IV mobilisation of the talus. Man Ther. 2015;20(4):598602. PubMed ID: 25765456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bennell KL, Talbot RC, Wajswelner H, Techovanich W, Kelly DH, Hall AJ. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44(3):175180. PubMed ID: 11676731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Krause DA, Cloud BA, Forster LA, Schrank JA, Hollman JH. Measurement of ankle dorsiflexion: a comparison of active and passive techniques in multiple positions. J Sport Rehabil. 2011;20(3):333344. PubMed ID: 21828385 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hoch MC, McKeon PO. Normative range of weight-bearing lunge test performance asymmetry in healthy adults. Man Ther. 2011;16(5):516519. PubMed ID: 21429784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hoch MC, Staton GS, McKeon PO. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 2011;14(1):9092. PubMed ID: 20843744 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Medeiros DM, Martini TF. Chronic effect of different types of stretching on ankle dorsiflexion range of motion: systematic review and meta-analysis. Foot. 2018;34:2835. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Maitland GD, Hengeveld E, Banks K, English K. Maitland’s Vertebral Manipulation. 6th ed. Oxford: Butterworth Heinemann; 2001.

  • 29.

    Smith JC, Washell BR, Aini MF, Brown S, Hall MC. Effects of static stretching and foam rolling on ankle dorsiflexion range of motion. Med Sci Sports Exerc. 2019;51(8):17521758. PubMed ID: 30817716 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nakamura M, Ikezoe T, Umegaki H, Kobayashi T, Nishishita S, Ichihashi N. Changes in passive properties of the gastrocnemius muscle-tendon unit during a 4-week routine static-stretching program. J Sport Rehabil. 2017;26(4):263268. PubMed ID: 27632863 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hogan K, Hoch M, Weinhandl J. P23 Effect of a single bout of gastrocnemius-soleus stretching on drop-landing biomechanics. Br J Sports Med. 2017;51(suppl 1):A21A22.

    • Search Google Scholar
    • Export Citation
  • 32.

    Hoch MC, McKeon PO. Joint mobilization improves spatiotemporal postural control and range of motion in those with chronic ankle instability. J Orthop Res. 2011;29(3):326332. PubMed ID: 20886654 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Venturini C, Penedo MM, Peixoto GH, Chagas MH, Ferreira ML, de Resende MA. Study of the force applied during anteroposterior articular mobilization of the talus and its effect on the dorsiflexion range of motion. J Manipulative Physiol Ther. 2007;30(8):593597. PubMed ID: 17996551 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Delahunt E, Cusack K, Wilson L, Doherty C. Joint mobilization acutely improves landing kinematics in chronic ankle instability. Med Sci Sports Exerc. 2013;45(3):514519. PubMed ID: 23034641 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kang MH, Lee DK, Kim SY, Kim JS, Oh JS. The influence of gastrocnemius stretching combined with joint mobilization on weight-bearing ankle dorsiflexion passive range of motion. J Phys Ther Sci. 2015;27(5):13171318. PubMed ID: 26157209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther. 1999;79(4):371383. PubMed ID: 10201543

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McPherson AL, Dowling B, Tubbs TG, Paci JM. Sagittal plane kinematic differences between dominant and non-dominant legs in unilateral and bilateral jump landings. Phys Ther Sport. 2016;22:5460. PubMed ID: 27583649 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Vicenzino B, Branjerdporn M, Teys P, Jordan K. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. J Orthop Sports Phys Ther. 2006;36(7):464471. PubMed ID: 16881463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Basnett CR, Hanish MJ, Wheeler TJ, et al. Ankle dorsiflexion range of motion influences dynamic balance in individuals with chronic ankle instability. Int J Sports Phys Ther. 2013;8(2):121128. PubMed ID: 23593550

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train. 2015;50(6):589595. PubMed ID: 25811846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hoch MC, Andreatta RD, Mullineaux DR, et al. Two-week joint mobilization intervention improves self-reported function, range of motion, and dynamic balance in those with chronic ankle instability. J Orthop Res. 2012;30(11):17981804. PubMed ID: 22610971 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Landrum EL, Kelln CB, Parente WR, Ingersoll CD, Hertel J. Immediate effects of anterior-to-posterior talocrural joint mobilization after prolonged ankle immobilization: a preliminary study. J Man Manip Ther. 2008;16(2):100105. PubMed ID: 19119395 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Weinhandl JT, O’Connor KM. Assessment of a greater trochanter-based method of locating the hip joint center. J Biomech. 2010;43(13):26332636. PubMed ID: 20605153 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Bresler B, Frankel J. The forces and moments in the leg during level walking. Trans Am Soc Mech Eng. 1950;72:2736.

  • 50.

    Kristianslund E, Krosshaug T, Mok KM, McLean S, van den Bogert AJ. Expressing the joint moments of drop jumps and sidestep cutting in different reference frames—does it matter? J Biomech. 2014;47(1):193199. PubMed ID: 24161796 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Pataky TC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. PubMed ID: 23948374 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 2010;43(10):19761982. PubMed ID: 20434726 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lin CW, Moseley AM, Herbert RD, Refshauge KM. Pain and dorsiflexion range of motion predict short- and medium-term activity limitation in people receiving physiotherapy intervention after ankle fracture: an observational study. Aust J Physiother. 2009;55(1):3137. PubMed ID: 19400023 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Hoch MC, Farwell KE, Gaven SL, Weinhandl JT. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J Athl Train. 2015;50(8):833839. PubMed ID: 26067428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Harkey M, McLeod M, Van Scoit A, et al. The immediate effects of an anterior-to-posterior talar mobilization on neural excitability, dorsiflexion range of motion, and dynamic balance in patients with chronic ankle instability. J Sport Rehabil. 2014;23(4):351359. PubMed ID: 24700526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Konrad A, Stafilidis S, Tilp M. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports. 2017;27(10):10701080. PubMed ID: 27367916 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Terada M, Pietrosimone BG, Gribble PA. Therapeutic interventions for increasing ankle dorsiflexion after ankle sprain: a systematic review. J Athl Train. 2013;48(5):696709. PubMed ID: 23914912 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97106. PubMed ID: 17884924 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Kay AD, Husbands-Beasley J, Blazevich AJ. Effects of contract-relax, static stretching, and isometric contractions on muscle-tendon mechanics. Med Sci Sports Exerc. 2015;47(10):21812190. PubMed ID: 25668401 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Taylor DC, Dalton JD Jr, Seaber AV, Garrett WE Jr. Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. Am J Sports Med. 1990;18(3):300309. PubMed ID: 2372082 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed ID: 1548984 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc. 2000;32(4):812819. PubMed ID: 10776901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Leardini A, Chiari L, Della Croce U, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005;21(2):212225. PubMed ID: 15639400 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Bates NA, Myer GD, Hale RF, Schilaty ND, Hewett TE. Prospective frontal plane angles used to predict ACL strain and identify those at high risk for sports-related ACL injury. Orthop J Sports Med. 2020;8(10):2325967120957646. PubMed ID: 33110927 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20(2):169181. PubMed ID: 20030776

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Argent R, Daly A, Caulfield B. Patient involvement with home-based exercise programs: can connected health interventions influence adherence? JMIR Mhealth Uhealth. 2018;6(3):e47. PubMed ID: 29496655 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572588. PubMed ID: 31162943 doi:

  • 69.

    Reid A, Birmingham T, Alcock G. Efficacy of mobilization with movement for patients with limited dorsiflexion after ankle sprain: a crossover trial. Physiother Can. 2007;59(3):166172. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med Sci Sports Exerc. 2007;39(11):20212028. PubMed ID: 17986911 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 290 290 129
Full Text Views 14 14 9
PDF Downloads 8 8 6