Increases in Load Carriage Magnitude and Forced Marching Change Lower-Extremity Coordination in Physically Active, Recruit-Aged Women

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The objective was to examine the interactive effects of load magnitude and locomotion pattern on lower-extremity joint angles and intralimb coordination in recruit-aged women. Twelve women walked, ran, and forced marched at body weight and with loads of +25%, and +45% of body weight on an instrumented treadmill with infrared cameras. Joint angles were assessed in the sagittal plane. Intralimb coordination of the thigh–shank and shank–foot couple was assessed with continuous relative phase. Mean absolute relative phase (entire stride) and deviation phase (stance phase) were calculated from continuous relative phase. At heel strike, forced marching exhibited greater (P < .001) hip flexion, knee extension, and ankle plantar flexion compared with running. At mid-stance, knee flexion (P = .007) and ankle dorsiflexion (P = .04) increased with increased load magnitude for all locomotion patterns. Forced marching (P = .009) demonstrated a “stiff-legged” locomotion pattern compared with running, evidenced by the more in-phase mean absolute relative phase values. Running (P = .03) and walking (P = .003) had greater deviation phase than forced marching. Deviation phase increased for running (P = .03) and walking (P < .001) with increased load magnitude but not for forced marching. With loads of >25% of body weight, forced marching may increase risk of injury due to inhibited energy attenuation up the kinetic chain and lack of variability to disperse force across different supportive structures.

Dever, Krajewski, Johnson, Allison, Ahamed, Lovalekar, Mi, and Flanagan are with the Neuromuscular Research Laboratory, University of Pittsburgh, Pittsburgh, PA, USA. Johnson and Anderst are with the Biodynamics Laboratory, University of Pittsburgh, Pittsburgh, PA, USA. Connaboy is with the Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, USA.

Connaboy (connaboy@pitt.edu) is corresponding author.
  • 1.

    Dean CE. The modern warrior’s combat load—dismounted operations in Afghanistan: 356. Med Sci Sports Exerc. 2008;40(5):60. doi:

  • 2.

    Jensen A, Laird M., Jameson JT., Kelly KR. Prevalence of musculoskeletal injuries sustained during marine corps recruit training. Mil Med. 2019;184(suppl 1):511520. PubMed ID: 30901397 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lovalekar M, Keenan KA, Beals K, et al. . Incidence and pattern of musculoskeletal injuries among women and men during marine corps training in sex-integrated units. J Sci Med Sport. 2020;23(10):P932P936. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Treloar AKL, Billing DC. Effect of load carriage on performance of an explosive, anaerobic military task. Mil Med. 2011;176(9):10271031. PubMed ID: 21987961 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Liew B, Morris S., Netto K. The effect of backpack carriage on the biomechanics of walking: a systematic review and preliminary meta-analysis. J Appl Biomech. 2016;32(6):614629. PubMed ID: 27705050 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    LaFiandra M, Wagenaar RC, Holf KG, Obusek JP. How do load carriage and walking speed influence trunk coordination and stride parameters? J Biomech. 2003;36(1):8795. PubMed ID: 12485642 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Adamczyk PG, Kuo AD. Redirection of center-of-mass velocity during the step-to-step transition of human walking. J Exp Biol. 2009;212(16):26682678. doi:

  • 8.

    Geyer H, Seyfarth A, Blickhan R. Compliant leg behavior explains basic dynamics of walking and running. Proc R Soc Lond B Biol Sci. 2006;273(1603):28612867. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kuo AD. The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum Mov Sci. 2007;26(4):617656. PubMed ID: 17617481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McGrath M, Howard D, Baker R. The strengths and weaknesses of inverted pendulum models of human walking. Gait Posture. 2015;41(2):389394. PubMed ID: 25468688 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Alexander RM. A model of bipedal locomotion on compliant legs. Philos Trans R Soc Lond B Biol Sci. 1992;338(1284):189198. PubMed ID: 1360684 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Farley CT, Gonzalez O. Leg stiffness and stride frequency in human running. J Biomech. 1996;29(2):181186. PubMed ID: 8849811 doi:

  • 13.

    McGowan CP, Grabowski AM, McDermott WJ, Herr HM, Kram R. Leg stiffness of sprinters using running-specific prostheses. J R Soc Interface. 2012;9(73):19751982. PubMed ID: 22337629 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech 1990;23:6578. PubMed ID: 2081746 doi:

  • 15.

    Seay JF, Haddad JM, van Emmerik RE, Hamill J. Coordination variability around the walk to run transition during human locomotion. Motor Control. 2006;10(2):178196. PubMed ID: 16871012 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Neptune RR, Sasaki K. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J Exp Biol. 2005;208(5):799808. PubMed ID: 15755878 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hreljac A. Determinants of the gait transition speed during human locomotion: kinematic factors. J Biomech. 1995;28(6):669677. PubMed ID: 7601866 doi:

  • 18.

    Pires NJ, Lay BS, Rubenson J. Modulation of joint and limb mechanical work in walk-to-run transition steps in humans. J Exp Biol. 2018;221:jeb174755. doi:

  • 19.

    Knapik J, Harman E, Reynolds K. Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl Ergon. 1996;27(3):207216. PubMed ID: 15677062 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Keren G, Epstein Y, Magazanik A, Sohar E. The energy cost of walking and running with and without a backpack load. Eur J Appl Physiol. 1981;46(3):317324. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Headquarters. Foot Marches. In: Army Dot, Washington DC: Army Publishing Directorate; 2017.

  • 22.

    Krajewski KT, Dever DE, Johnson CC, et al. . Load carriage magnitude and locomotion strategy alter knee total joint moment during bipedal ambulatory tasks in recruit-aged women. J Biomech. 2020;105:109772. PubMed ID: 32279931 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hein T, Schmeltzpfenning T, Krauss I, Maiwald C, Horstmann T, Grau S. Using the variability of continuous relative phase as a measure to discriminate between healthy and injured runners. Hum Mov Sci. 2012;31(3):683694. PubMed ID: 21962907 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Li L, Van Den Bogert EC, Caldwill GE, Van Emmerik RE, Hamill J. Coordination patterns of walking and running at similar frequencies. Hum Mov Sci. 1999;18(1):6785. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297308. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Galgon AK, Shewokis PA. Using mean absolute relative phase, deviation phase and point-estimation relative phase to measure postural coordination in a serial reaching task. J Sci Med Sport. 2016;15:131141.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ghanavati T, Salavati M, Karimi N, et al. . Intra-limb coordination while walking is affected by cognitive load and walking speed. J Biomech. 2014;47(10):23002305. PubMed ID: 24861632 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nordin A, Dufek JS. Reviewing the variability-overuse injury hypothesis: does movement variability relate to landing injuries? Res Q Exerc Sport. 2019;90(2):190205. PubMed ID: 30908166 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Baida SR, Gore SJ, Franklyn-Miller AD, Moran KA. Does the amount of lower extremity movement variability differ between injured and uninjured populations? A systematic review. Scand J Med Sci Sports. 2018;28(4):13201338. PubMed ID: 29239047 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Seay J, Fellin RE, Sauer SG, Frykman PN, Bensel CK. Lower extremity biomechanical changes associated with symmetrical torso loading during simulated marching. Mil Med. 2014;179(1):8591. PubMed ID: 24402991 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Delignières D, Torre K. Fractal dynamics of human gait: a reassessment of 1996 data of Hausdorff et al. J Appl Physiol. 2009:106(4):12721279. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Taylor NA, Peoples GE, Petersen SR. Load carriage, human performance, and employment standards. Appl Physiol Nutr Metab. 2016;41(6):S131S147. doi:

  • 33.

    Krajewski KT, Dever DE, Johnson CC, et al. . Load magnitude and locomotion pattern alter locomotor system function in healthy young adult women. Front Bioeng Biotechnol 2020;8:1066. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Smilios I, Myrkos A, Zafeiridis A, Toubekis A, Spassis A, Tokmakidis SP. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics, and blood lactate. J Strength Cond Res. 2018;32(8):21832189. PubMed ID: 28301436 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Riazati S, Caplan N, Hayes PR. The number of strides required for treadmill running gait analysis is unaffected by either speed or run duration. J Biomech. 2019;97:109366. PubMed ID: 31604569 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cohen J, Cohen P, West SG, Aiken LS. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. 3rd ed. New York, NY: Routledge; 2003.

    • Search Google Scholar
    • Export Citation
  • 37.

    Lieberman DE, Venkadesan M, Werbel WA, et al. . Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. PubMed ID: 20111000 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Reenalda J, Maartens E, Buurke JH, Gruber AH. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait Posture. 2019;68:155160. PubMed ID: 30481697 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Segers V. A Biomechanical Analysis of the Realization of Actual Human Gait Transition. Dissertation. Ghent University; 2006.

  • 40.

    Farley CT, Ferris DP. Biomechanics of walking and running: center of mass movements to muscle action. Exerc Sport Sci Rev. 1998;26:253. PubMed ID: 9696992 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kinoshita H. Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics. 1985;28(9):13471362. PubMed ID: 4065090 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lidstone D, Stewart JA, Gurchiek R, Needle AR, van Wekhoven H, McBride JM. Physiological and biomechanical responses to prolonged heavy load carriage during level treadmill walking in females. J Appl Biomech. 2017;33(4):248255. PubMed ID: 28084868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Baggaley M, Esposito M, Xu C, Unnikrishnan G, Reifman J, Edwards WB. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running. Gait Posture. 2020;77:190194. PubMed ID: 32058282 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Turvey M. Coordination. American Psychologist. 1990;45(8):938953. doi:

  • 45.

    Latash M, Scholz JP, Schöner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev. 2002;30(1):2631. PubMed ID: 11800496 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Mukherjee M, Yentes JM. Movement variability: a perspective on success in sports, health, and life. Scand J Med Sci Sports. 2018;28(3):758759. PubMed ID: 29480563 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Black D, Smith BA, Wu J, Ulrich BD. Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without down syndrome. Exp Brain Res. 2007;183(4):511521. PubMed ID: 17717659 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Gates DH, Dingwell JB. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res. 2008;187(4):573585. PubMed ID: 18327575 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Caballero C, Davids K, Heller B, Wheat J, Moreno FJ. Movement variability emerges in gait as adaptation to task constraints in dynamic environments. Gait Posture. 2019;70:15. PubMed ID: 30771594 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Hauschild VD, Lee T, Barnes S, Forrest L, Hauret K, Jones BH. The etiology of injuries in US army initial entry training. US Army Med Dep J. 2018;2(2–18):2229.

    • Search Google Scholar
    • Export Citation
  • 51.

    Cameron KL, Driban JB, Svoboda SJ. Osteoarthritis and the tactical athlete: a systematic review. J Athl Train. 2016;51(11):952961. PubMed ID: 27115044 doi:

  • 52.

    Loverro K, Hasselquist L, Lewis CL. Females and males use different hip and knee mechanics in response to symmetric military-relevant loads. J Biomech. 2019;95:109280. PubMed ID: 31405526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Roulo C. Defense Department Expands Women’s Combat Role. American Forces Press Service. Published January 25, 2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Molloy JM, Pendergrass TL, Lee IE, Chervak MC, Hauret KG, Rhon DI. Musculoskeletal injuries and United States army readiness part I: overview of injuries and their strategic impact. Mil Med. 2020;185:e1461e1471. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 587 587 86
Full Text Views 19 19 8
PDF Downloads 19 19 6