Load Carriage During Walking Increases Dynamic Stiffness at Distal Lower Limb Joints

in Journal of Applied Biomechanics
View More View Less
  • 1 Universidade Federal de Minas Gerais
  • | 2 The Wyss Institute for Biologically Inspired Engineering
  • | 3 Harvard University
  • | 4 Penn State Altoona
  • | 5 University of Colorado Boulder
  • | 6 Boston University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The addition of a load during walking requires changes in the movement pattern. The investigation of the dynamic joint stiffness behavior may help to understand the lower limb joints’ contribution to these changes. This study aimed to investigate the dynamic stiffness of lower limb joints in response to the increased load carried while walking. Thirteen participants walked in two conditions: unloaded (an empty backpack) and loaded (the same backpack plus added mass corresponding to 30% of body mass). Dynamic stiffness was calculated as the linear slope of the regression line on the moment–angle curve during the power absorption phases of the ankle, knee, and hip in the sagittal plane. The results showed that ankle (P = .002) and knee (P < .001) increased their dynamic stiffness during loaded walking compared with unloaded, but no difference was observed at the hip (P = .332). The dynamic stiffness changes were different among joints (P < .001): ankle and knee changes were not different (P < .992), but they had a greater change than hip (P < .001). The nonuniform increases in lower limb joint dynamic stiffness suggest that the ankle and knee are critical joints to deal with the extra loading.

Santos, Fonseca, Araújo, and Souza are with the Department of Physical Therapy, School of Physical Education, Physical Therapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Santos, Araújo, Lee, Saucedo, Allen, Siviy, and Walsh are with the Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA. Lee, Saucedo, Allen, Siviy, Walsh, and Holt are with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Saucedo is also with the Department of Kinesiology, Penn State Altoona, Altoona, PA, USA. Allen is also with the Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA. Holt is also with the Department of Physical Therapy and Athletic Training, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA.

Santos (trtsantos@gmail.com) is corresponding author.
  • 1.

    Knapik J, Harman E, Reynolds K. Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl Ergon. 1996;27(3):207216. PubMed ID: 15677062 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Holt KG, Wagenaar RC, LaFiandra ME, Kubo M, Obusek JP. Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. J Biomech. 2003;36(4):465471. PubMed ID: 12600336 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Caron RR, Lewis CL, Saltzman E, Wagenaar RC, Holt KG. Musculoskeletal stiffness changes linearly in response to increasing load during walking gait. J Biomech. 2015;48(6):11651171. PubMed ID: 25678200 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Holt KG, Obusek JP, Fonseca ST. Constraints on disordered locomotion a dynamical systems perspective on spastic cerebral palsy. Hum Mov Sci. 1996;15(2):177202. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Holt KG, Fonseca ST, Lafiandra ME. The dynamics of gait in children with spastic hemiplegic cerebral palsy: theoretical and clinical implications. Hum Mov Sci. 2000;19(3):375405. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Liew B, Netto K, Morris S. Increase in leg stiffness reduces joint work during backpack carriage running at slow velocities. J Appl Biomech. 2017;33(5):347353. PubMed ID: 28530461 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Birrell SA, Hooper RH, Haslam RA. The effect of military load carriage on ground reaction forces. Gait Posture. 2007;26(4):611614. PubMed ID: 17337189 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Liew B, Morris S, Netto K. The effect of backpack carriage on the biomechanics of walking: a systematic review and preliminary meta-analysis. J Appl Biomech. 2016;32(6):614629. PubMed ID: 27705050 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Caron RR, Wagenaar RC, Lewis CL, Saltzman E, Holt KG. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking. J Biomech. 2013;46(1):7076. PubMed ID: 23149079 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Perry J. Gait Analysis: Normal and Pathological Function.Thorofare, NJ:  SLACK Incorporated; 1992.

  • 11.

    Kerrigan DC, Todd MK, Della Croce U. Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil. 1998;77(1):27. PubMed ID: 9482373 doi: Accessed December 17, 2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Whittington B, Silder A, Heiderscheit B, Thelen DG. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture. 2008;27(4):628634. PubMed ID: 17928228 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jin L, Hahn ME. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds. Hum Mov Sci. 2018;58:19. PubMed ID: 29331489 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Frigo C, Crenna P, Jensen LM. Moment-angle relationship at lower limb joints during human walking at different velocities. J Electromyogr Kinesiol. 1996;6(3):177190. PubMed ID: 20719675 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Crenna P, Frigo C. Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects. Hum Mov Sci. 2011;30(6):11851198. PubMed ID: 21669469 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ding Y, Galiana I, Asbeck AT, et al. . Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits. IEEE Trans Neural Syst Rehabil Eng. 2017;25(2):119130. PubMed ID: 26849868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Asbeck AT, De Rossi SMM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Rob Res. 2015;34(6):744762. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lee S, Kim J, Baker L, et al. . Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. J Neuroeng Rehabil. 2018;15(1):19. PubMed ID: 30001726 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Huang T-WP, Kuo AD. Mechanics and energetics of load carriage during human walking. J Exp Biol. 2014;217(4):605613. PubMed ID: 24198268 doi:

  • 20.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc; 2009.

  • 21.

    Hanavan EP. A Mathematical Model of the Human Body. AMRL TR. Published online. AMRL-TR-64-102. 1964:1149.

  • 22.

    Davis RB, DeLuca PA. Gait characterization via dynamic joint stiffness. Gait Posture. 1996;4(3):224231. doi:

  • 23.

    Latash ML, Zatsiorsky VM. Joint stiffness: myth or reality? Hum Mov Sci. 1993;12(6):653692. doi:

  • 24.

    Tateuchi H, Tsukagoshi R, Fukumoto Y, Oda S, Ichihashi N. Dynamic hip joint stiffness in individuals with total hip arthroplasty: relationships between hip impairments and dynamics of the other joints. Clin Biomech. 2011;26(6):598604. PubMed ID: 21392872 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gabriel RC, Abrantes J, Granata K, Bulas-Cruz J, Melo-Pinto P, Filipe V. Dynamic joint stiffness of the ankle during walking: gender-related differences. Phys Ther Sport. 2008;9(1):1624. PubMed ID: 19083700 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Silva PL, Fonseca ST, Ocarino JM, Gonçalves GP, Mancini MC. Contributions of cocontraction and eccentric activity to stiffness regulation. J Mot Behav. 2009;41(3):207218. PubMed ID: 19366654 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hogan N, Sternad D. Dynamic primitives of motor behavior. Biol Cybern. 2012;106(11–12):727739. PubMed ID: 23124919 doi:

  • 28.

    Saunders JB, Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35-A(3):543558. PubMed ID: 13069544 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture. 1999;9(3):207231. PubMed ID: 10575082 doi:

  • 30.

    He L, Xiong C-H, Zhang Q-H, Chen W-B, Fu C-L, Lee K-M. A backpack minimizing the vertical acceleration of the load improves the economy of human walking. IEEE Trans Neural Syst Rehabil Eng. 2020;28(9):19942004. PubMed ID: 32746327 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Krautwurst BK, Wolf SI, Heitzmann DWW, Gantz S, Braatz F, Dreher T. The influence of hip abductor weakness on frontal plane motion of the trunk and pelvis in patients with cerebral palsy. Res Dev Disabil. 2013;34(4):11981203. PubMed ID: 23396196 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Salsich GB, Mueller MJ. Effect of plantar flexor muscle stiffness on selected gait characteristics. Gait Posture. 2000;11(3):207216. PubMed ID: 10802433 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sawicki GS, Beck ON, Kang I, Young AJ. The exoskeleton expansion: improving walking and running economy. J Neuroeng Rehabil. 2020;17(1):25. PubMed ID: 32075669 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014;11(1):80. PubMed ID: 24885527 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One. 2013;8(2):e56137. PubMed ID: 23418524 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    LaFiandra M, Wagenaar R., Holt K., Obusek J. How do load carriage and walking speed influence trunk coordination and stride parameters? J Biomech. 2003;36(1):8795. PubMed ID: 12485642 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Knapik JJ, Reynolds KL, Harman E. Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Mil Med. 2004;169(1):4556. PubMed ID: 14964502 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Birrell SA, Haslam RA. The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl Ergon. 2010;41(4):585590. PubMed ID: 20060096 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sessoms PH, Gobrecht M, Niederberger BA, et al. . Effect of a load distribution system on mobility and performance during simulated and field hiking while under load. Ergonomics. 2020;63(2):133144. PubMed ID: 31709928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sport Med. 2003;33(2):145164. PubMed ID: 12617692 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(2):333345. PubMed ID: 11731568 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Chang AH, Chmiel JS, Almagor O, et al. . Association of baseline knee sagittal dynamic joint stiffness during gait and 2-year patellofemoral cartilage damage worsening in knee osteoarthritis. Osteoarthr Cartil. 2017;25(2):242248. PubMed ID: 27729289 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 434 434 113
Full Text Views 26 26 18
PDF Downloads 22 22 17