Age-Related Differences in Hip Flexion Maximal and Rapid Strength and Rectus Femoris Muscle Size and Composition

in Journal of Applied Biomechanics
View More View Less
  • 1 Texas Tech University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study aimed to examine the effects of age on hip flexion maximal and rapid strength and rectus femoris (RF) muscle size and composition in men. Fifteen young (25 [3] y) and 15 older (73 [4] y) men performed isometric hip flexion contractions to examine peak torque and absolute and normalized rate of torque development (RTD) at time intervals of 0 to 100 and 100 to 200 milliseconds. Ultrasonography was used to examine RF muscle cross-sectional area and echo intensity. Peak torque, absolute RTD at 0 to 100 milliseconds, and absolute and normalized RTD at 100 to 200 milliseconds were significantly lower (P = .004–.045) in the old compared with the young men. The older men exhibited lower cross-sectional area (P = .015) and higher echo intensity (P = .007) than the young men. Moreover, there were positive relationships between cross-sectional area and absolute RTD at 0 to 100 milliseconds (r = .400) and absolute RTD at 100 to 200 milliseconds (r = .450) and negative relationships between echo intensity and absolute RTD at 100 to 200 milliseconds (r = −.457) and normalized RTD at 100 to 200 milliseconds (r = −.373). These findings indicate that hip flexion maximal and rapid strength and RF muscle size and composition decrease in old age. The relationships observed between ultrasound-derived RF parameters and measurements of RTD suggest that these age-related declines in muscle size and composition may be relevant to hip flexion rapid torque production.

The authors are with the Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.

Palmer (ty.palmer@ttu.edu) is corresponding author.
  • 1.

    Samuel D, Rowe P, Nicol A. The functional demand (FD) placed on the knee and hip of older adults during everyday activities. Arch Gerontol Geriatr. 2013;57(2):192197. PubMed ID: 23561852 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Spinoso DH, Marques NR, LaRoche DP, et al. Hip, knee, and ankle functional demand during habitual and fast-pace walking in younger and older women. J Aging Phys Act. 2019;27(2):242251. PubMed ID: 30117347 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Osawa Y, Studenski SA, Ferrucci L. Knee extension rate of torque development and peak torque: associations with lower extremity function. J Cachexia Sarcopenia Muscle. 2018;9(3):530539. PubMed ID: 29569834 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Piirainen JM, Linnamo V, Cronin NJ, Avela J. Age-related neuromuscular function and dynamic balance control during slow and fast balance perturbations. J Neurophysiol. 2013;110(11):25572562. PubMed ID: 24047908 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Overend TJ, Cunningham DA, Kramer JF, Lefcoe MS, Paterson DH. Knee extensor and knee flexor strength: cross-sectional area ratios in young and elderly men. J Gerontol A Biol Sci Med Sci. 1992;47(6):M204M210. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Thompson BJ, Conchola EC, Stock MS. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors. Age. 2015;37(6):111. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Thompson BJ, Ryan ED, Sobolewski EJ, Conchola EC, Cramer JT. Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men. Exp Gerontol. 2013;48(2):277282. PubMed ID: 23142518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hester GM, Magrini MA, Colquhoun RJ, et al. Cross-education: effects of age on rapid and maximal voluntary contractile characteristics in males. Eur J Appl Physiol. 2019;119(6):13131322. PubMed ID: 30874884 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gerstner GR, Thompson BJ, Rosenberg JG, Sobolewski EJ, Scharville MJ, Ryan ED. Neural and muscular contributions to the age-related reductions in rapid strength. Med Sci Sports Exerc. 2017;49(7):13311339. PubMed ID: 28166121 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Palmer TB, Thiele RM, Thompson BJ. Age-related differences in maximal and rapid torque characteristics of the hip extensors and dynamic postural balance in healthy, young and old females. J Strength Cond Res. 2017;31(2):480488. PubMed ID: 27227788 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pijnappels M, Bobbert MF, van Dieën JH. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture. 2005;21(4):388394. PubMed ID: 15886128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Thelen DG, Wojcik LA, Schultz AB, Ashton-Miller JA, Alexander NB. Age differences in using a rapid step to regain balance during a forward fall. J Gerontol A Biol Sci Med Sci. 1997;52(1):M8M13. PubMed ID: 9008663 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thorstensson A, Karlsson J, Viitasalo JHT, Luhtanen P, Komi PV. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98(2):232236. PubMed ID: 983733 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kamo T, Asahi R, Azami M, et al. Rate of torque development and the risk of falls among community dwelling older adults in Japan. Gait Posture. 2019;72:2833. PubMed ID: 31136939 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Morcelli MH, LaRoche DP, Crozara LF, et al. Discriminatory ability of lower-extremity peak torque and rate of torque development in the identification of older women with slow gait speed. J Appl Biomech. 2018;34(4):270277. PubMed ID: 29485310 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Johnson ME, Mille M-L, Martinez KM, Crombie G, Rogers MW. Age-related changes in hip abductor and adductor joint torques. Arch Phys Med Rehabil. 2004;85(4):593597. PubMed ID: 15083435 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Madigan ML. Age-related differences in muscle power during single-step balance recovery. J Appl Biomech. 2006;22(3):186193. PubMed ID: 17215550 doi:

  • 18.

    Gottschall JS, Kram R. Energy cost and muscular activity required for leg swing during walking. J Appl Physiol. 2005;99(1):2330. PubMed ID: 16036902 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed ID: 10200378 doi:

  • 20.

    Quinlan JI, Maganaris CN, Franchi MV, et al. Muscle and tendon contributions to reduced rate of torque development in healthy older males. J Gerontol A Biol Sci Med Sci. 2018;73(4):539545. PubMed ID: 28977366 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Reimers CD, Fleckenstein JL, Witt TN, Müller-Felber W, Pongratz DE. Muscular ultrasound in idiopathic inflammatory myopathies of adults. J Neurol Sci. 1993;116(1):8292. PubMed ID: 8509807 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pillen S, Tak RO, Zwarts MJ, et al. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol. 2009;35(3):443446. PubMed ID: 19081667 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wilhelm EN, Rech A, Minozzo F, Radaelli R, Botton CE, Pinto RS. Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age. 2014;36(3):11131122. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Moreau NG, Falvo MJ, Damiano DL. Rapid force generation is impaired in cerebral palsy and is related to decreased muscle size and functional mobility. Gait Posture. 2012;35(1):154158. PubMed ID: 21930383 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Markhede G, Stener B. Function after removal of various hip and thigh muscles for extirpation of tumors. Acta Orthop Scand. 1981;52(4):373395. PubMed ID: 7315231 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Andersen LL, Andersen JL, Zebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):e162e169. PubMed ID: 19793220 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Aagaard P, Magnusson PS, Larsson B, Kjoer M, Krustrup P. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly. Med Sci Sports Exerc. 2007;39(11):19891996. PubMed ID: 17986907 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Krantz MM, Åström M, Drake AM. Strength and fatigue measurements of the hip flexor and hip extensor muscles: test-retest reliability and limb dominance effect. Int J Sports Phys Ther. 2020;15(6):967976. PubMed ID: 33344013 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mota JA, Stock MS. Rectus femoris echo intensity correlates with muscle strength, but not endurance, in younger and older men. Ultrasound Med Biol. 2017;43(8):16511657. PubMed ID: 28533003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Berg H, Tedner B, Tesch P. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand. 1993;148(4):379385. PubMed ID: 8213193 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Magrini MA, Colquhoun RJ, Barrera-Curiel A, et al. Muscle size, strength, power, and echo intensity, but not specific tension, are affected by age in physically active adults. Isokinet Exerc Sci. 2018;26(2):95103. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Young HJ, Jenkins NT, Zhao Q, Mccully KK. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve. 2015;52(6):963971. PubMed ID: 25787260 doi:

  • 33.

    Palmer TB, Blinch J, Farrow AC, Agu-Udemba CC, Mitchell EA. Real-time measurement of isometric peak torque and rate of torque development using a novel strength testing device: a validity and reliability study. Physiol Meas. 2020;41(11):115005. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Holtermann A, Roeleveld K, Vereijken B, Ettema G. The effect of rate of force development on maximal force production: acute and training-related aspects. Eur J Appl Physiol. 2007;99(6):605613. PubMed ID: 17219170 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 36.

    Morcelli MH, LaRoche DP, Crozara LF, et al. Neuromuscular performance in the hip joint of elderly fallers and non-fallers. Aging Clin Exp Res. 2016;28(3):443450. PubMed ID: 26400861 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Charlier R, Mertens E, Lefevre J, Thomis M. Muscle mass and muscle function over the adult life span: a cross-sectional study in Flemish adults. Arch Gerontol Geriatr. 2015;61(2):161167. PubMed ID: 26164372 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Valour D, Ochala J, Ballay Y, Pousson M. The influence of ageing on the force–velocity–power characteristics of human elbow flexor muscles. Exp Gerontol. 2003;38(4):387395. PubMed ID: 12670625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ema R, Kawaguchi E, Suzuki M, Akagi R. Plantar flexor strength at different knee positions in older and young males and females. Exp Gerontol. 2020;142:111148. PubMed ID: 33171277 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Wretenberg P, Arborelius UP. Power and work produced in different leg muscle groups when rising from a chair. Eur J Appl Physiol. 1994;68(5):413417. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Trappe T, Lindquist D, Carrithers J. Muscle-specific atrophy of the quadriceps femoris with aging. J Appl Physiol. 2001;90(6):20702074. PubMed ID: 11356767 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Strasser EM, Draskovits T, Praschak M, Quittan M, Graf A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age. 2013;35(6):23772388. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol. 1979;46(3):451456. PubMed ID: 438011 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Rech A, Radaelli R, Goltz FR, da Rosa LHT, Schneider CD, Pinto RS. Echo intensity is negatively associated with functional capacity in older women. Age. 2014;36(5):19. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Baudry S, Klass M, Pasquet B, Duchateau J. Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol. 2007;100(5):515525. PubMed ID: 16718508 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hales J, Gandevia S. Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses. J Neurosci Methods. 1988;25(2):97102. PubMed ID: 3172828 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    van der Velde JH, Savelberg HH, van der Berg JD, et al. Sedentary behavior is only marginally associated with physical function in adults aged 40–75 years—the Maastricht Study. Front Physiol. 2017;8:242. PubMed ID: 28487660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 52
Full Text Views 13 13 2
PDF Downloads 6 6 0