Phase-Specific Force and Time Predictors of Standing Long Jump Distance

in Journal of Applied Biomechanics
View More View Less
  • 1 Texas Tech University
  • | 2 Marquette University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study sought to identify potential predictors of standing long jump (SLJ) performance using force–time strategy metrics within the unloading, eccentric yielding, eccentric braking, and concentric phases. Fifteen National Collegiate Athletic Association division 1 male soccer players (19 [1] y, 1.81 [0.94] m, 80.3 [22.4] kg) performed 3 maximum-effort SLJs, while 3-dimensional ground reaction force (GRF) data were obtained. Regularized regression models were used to investigate associations between force–time strategy metrics and 2 metrics of SLJ performance (ie, jump distance and modified reactive strength index). Jump height and eccentric yielding time were the only predictors of jump distance that also demonstrated large correlations to jump distance. Anterior–posterior unloading yank, average concentric vertical force, and concentric phase duration were the only predictors of modified reactive strength index that also demonstrated large correlations to modified reactive strength index. To maximize SLJ distance in high-level soccer athletes, human performance practitioners could design interventions to drive changes in strategy to increase jump height and decrease eccentric yielding time. To improve SLJ explosiveness, interventions to drive changes in unloading and concentric force application and decrease concentric time could be emphasized. Importantly, unique variable combinations can be targeted when training for SLJ distance and explosiveness adaptations.

Harry, Krzyszkowski, and Chowning are with the Human Performance & Biomechanics Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA. Kipp is with the Motion Analysis and Biomechanics Laboratory, Department of Physical Therapy—Program in Exercise Science, Marquette University, Milwaukee, WI, USA.

Harry (john.harry@ttu.edu) is corresponding author.
  • 1.

    Sayers A, Sayers BE, Binkley H. Preseason fitness testing in national collegiate athletic association soccer. Strength Cond J. 2008;30(2):7075. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yanci J, Los Arcos A, Mendiguchia J, Brughelli M. Relationships between sprinting, agility, one-and two-leg vertical and horizontal jump in soccer players. Kinesiol Inter J Fund Appl Kinesiol. 2014;46(2):194201.

    • Search Google Scholar
    • Export Citation
  • 3.

    Moresi MP, Bradshaw EJ, Greene D, Naughton G. The assessment of adolescent female athletes using standing and reactive long jumps. Sports Biomech. 2011;10(02):7384. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, Deklerk M. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):11401147. PubMed ID: 19528866 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Maulder P, Cronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport. 2005;6(2):7482. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dobbs CW, Gill ND, Smart DJ, McGuigan MR. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J Strength Cond Res. 2015;29(3):661671. PubMed ID: 25226312 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barker LA, Harry JR, Dufek JS, Mercer JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res. 2017;31(4):932938. PubMed ID: 27398922 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Harry JR, Barker LA, James CR, Dufek JS. Performance differences among skilled soccer players of different playing positions during vertical jumping and landing. J Strength Cond Res. 2018;32(2):304312. PubMed ID: 29369951 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Harry JR, Barker LA, Mercer JA, Dufek JS. Vertical and horizontal impact force comparison during jump-landings with and without rotation in NCAA division 1 male soccer players. J Strength Cond Res. 2017;31(7):17801786. PubMed ID: 27669194 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Requena B, de Villarreal ES-S, Gapeyeva H, Ereline J, García I, Pääsuke M. Relationship between postactivation potentiation of knee extensor muscles, sprinting and vertical jumping performance in professional soccer players. J Strength Cond Res. 2011;25(2):367373. PubMed ID: 20093962 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Filipovic A, Grau M, Kleinöder H, Zimmer P, Hollmann W, Bloch W. Effects of a whole-body electrostimulation program on strength, sprinting, jumping, and kicking capacity in elite soccer players. J Sports Sci Med. 2016;15(4):639. PubMed ID: 27928210

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jakobsen MD, Sundstrup E, Randers MB, et al. . The effect of strength training, recreational soccer and running exercise on stretch–shortening cycle muscle performance during countermovement jumping. Hum Mov Sci. 2012;31(4):970986. PubMed ID: 22397814 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chalitsios C, Nikodelis T, Panoutsakopoulos V, Chassanidis C, Kollias I. Classification of soccer and basketball players’ jumping performance characteristics: a logistic regression approach. Sports. 2019;7(7):163. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Harry JR, Paquette MR, Caia J, Townsend RJ, Weiss LW, Schilling BK. Effects of footwear condition on maximal jumping performance. J Strength Cond Res. 2015;29(6):16571665. PubMed ID: 26010799 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Porter JM, Ostrowski EJ, Nolan RP, Wu WF. Standing long-jump performance is enhanced when using an external focus of attention. J Strength Cond Res. 2010;24(7):17461750. PubMed ID: 20543731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ramey MR. Force plate designs and applications. Exerc Sport Sci Rev. 1975;3(1):303320. doi:

  • 17.

    Beckham G, Suchomel T, Mizuguchi S. Force plate use in performance monitoring and sport science testing. New Stud Athl. 2014;29(3):2537.

    • Search Google Scholar
    • Export Citation
  • 18.

    McMahon J, Suchomel TJ, Lake J, Comfort P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond J. 2018;40(4):96106. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Peterson Silveira R, Stergiou P, Carpes FP, Castro FAdS, Katz L, Stefanyshyn DJ. Validity of a portable force platform for assessing biomechanical parameters in three different tasks. Sports Biomech. 2017;16(2):177186. PubMed ID: 27588733 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chavda S, Bromley T, Jarvis P, et al. . Force-time characteristics of the countermovement jump: analyzing the curve in Excel. Strength Cond J. 2018;40(2):6777. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Harry JR. MATLAB guide for analyzing countermovement strategies and performance over time. Strength Cond J. In Press.

  • 22.

    Harry JR, Barker LA, Paquette MR. A joint power approach to identify countermovement jump phases using force platforms. Med Sci Sports Exerc. 2020;52(4):9931000. PubMed ID: 31688643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kipp K, Kiely MT, Geiser CF. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. J Strength Cond Res. 2016;30(5):13411347. PubMed ID: 26439787 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Barker LA, Harry JR, Mercer JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res. 2018;32(1):248254. PubMed ID: 28746248 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McMahon JJ, Jones PA, Suchomel TJ, Lake J, Comfort P. Influence of reactive strength index modified on force-and power-time curves. Int J Sports Physiol Perform. 2018;13(2):220227. PubMed ID: 28605214 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Harry JR, Paquette MR, Schilling BK, Barker LA, James CR, Dufek JS. Kinetic and electromyographic sub-phase characteristics with relation to countermovement vertical jump performance. J Appl Biomech. 2018;34(4):291297. PubMed ID: 29485344 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Krzyszkowski J, Chowning LD, Harry JR. Phase-specific predictors of countermovement jump performance that distinguish good from poor jumpers. J Strength Cond Res. In Press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Harry JR, Blinch J, Barker LA, Krzyszkowski J, Chowning LD. Low pass filter effects on metrics of countermovement vertical jump performance. J Strength Cond Res. In Press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Samozino P, Morin J-B, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):29402945. PubMed ID: 18789803 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Domire Z, Challis J. The influence of squat depth on maximal vertical jump performance. J Sports Sci. 2007;25(2):193. PubMed ID: 17127594 doi:

  • 31.

    McLellan CP, Lovell DI, Gass GC. The role of rate of force development on vertical jump performance. J Strength Cond Res. 2011;25(2):379385. PubMed ID: 20093963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soci Ser B (Methodological). 1996;58(1):267288.

  • 33.

    Kipp K, Krzyszkowski J, Heeneman J. Hip moment and knee power eccentric utilisation ratios determine lower-extremity stretch-shortening cycle performance. Sports Biomech. 2019:111. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lees A, Vanrenterghem J, De Clercq D. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37(12):19291940. PubMed ID: 15519601 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Owen NJ, Watkins J, Kilduff LP, Bevan HR, Bennett MA. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J Strength Cond Res. 2014;28(6):15521558. PubMed ID: 24276298 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lake JP, Mundy PD, Comfort P, McMahon JJ, Suchomel TJ, Carden P. The effect of barbell load on vertical jump landing force-time characteristics. J Strength Cond Res. 2021;35(1):2532. PubMed ID: 29489716 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Taylor J, Tibshirani RJ. Statistical learning and selective inference. Proc Nat Acad Sci. 2015;112(25):76297634.

  • 38.

    Zhou D-X. On grouping effect of elastic net. Stat Probab Lett. 2013;83(9):21082112. doi:

  • 39.

    Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Methodological). 2005;67(2):301320. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wakai M, Linthorne NP. Optimum take-off angle in the standing long jump. Hum Mov Sci. 2005;24(1):8196. PubMed ID: 15949583 doi:

  • 42.

    Wu WF, Porter JM, Brown LE. Effect of attentional focus strategies on peak force and performance in the standing long jump. J Strength Cond Res. 2012;26(5):12261231. PubMed ID: 22082793 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Ducharme SW, Wu WF, Lim K, Porter JM, Geraldo F. Standing long jump performance with an external focus of attention is improved as a result of a more effective projection angle. J Strength Cond Res. 2016;30(1):276281. PubMed ID: 26691415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Cohen DD, Restrepo A, Richter C, et al. . Detraining of specific neuromuscular qualities in elite footballers during COVID-19 quarantine. Sci Med Football. In Press.

    • Search Google Scholar
    • Export Citation
  • 45.

    Harry JR, Barker LA, Paquette MR. Sex and acute weighted vest differences in force production and joint work during countermovement vertical jumping. J Sports Sci. 2019;37(12):13181326. PubMed ID: 30558481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 255 255 72
Full Text Views 43 43 15
PDF Downloads 35 35 17