The Effects of an Acute Maximal Seated Lumbar Spine Flexion Exposure on Low Back Mechanical Pain Sensitivity

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Waterloo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Viscoelastic creep generated in the lumbar spine following sustained spine flexion may affect the relationship between tissue damage and perceived pain. Two processes supporting this altered relationship include altered neural feedback and inflammatory processes. Our purpose was to determine how low back mechanical pain sensitivity changes following seated lumbar spine flexion using pressure algometry in a repeated-measures, cross-sectional laboratory design. Thirty-eight participants underwent a 10-minute sustained seated maximal flexion exposure with a 40-minute standing recovery period. Pressure algometry assessed pressure pain thresholds and the perceived intensity and unpleasantness of fixed pressures. Accelerometers measured spine flexion angles, and electromyography measured muscular activity during flexion. The flexion exposure produced 4.4° (2.7°) of creep that persisted throughout the entire recovery period. The perception of low back stimulus unpleasantness was elevated immediately following the exposure, 20 minutes before a delayed increase in lumbar erector spinae muscle activity. Women reported the fixed pressures to be more intense than men. Sustained flexion had immediate consequences to the quality of mechanical stimulus perceived but did not alter pressure pain thresholds. Neural feedback and inflammation seemed unlikely mechanisms for this given the time and direction of pain sensitivity changes, leaving a postulated cortical influence.

The authors are with the Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada.

Callaghan (callagha@uwaterloo.ca) is corresponding author.
  • 1.

    Skovlund SV, Bláfoss R, Sundstrup E, Andersen LL. Association between physical work demands and work ability in workers with musculoskeletal pain: cross-sectional study. BMC Musculoskelet Disord. 2020;21(1):18. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lis AM, Black KM, Korn H, Nordin M. Association between sitting and occupational LBP. Eur Spine J. 2007;16(2):283298. PubMed ID: 16736200 doi:

  • 3.

    Villumsen M, Samani A, Jørgensen MB, Gupta N, Madeleine P, Holtermann A. Are forward bending of the trunk and low back pain associated among Danish blue-collar workers? A cross-sectional field study based on objective measures. Ergonomics. 2015;58(2):246258. PubMed ID: 25374330 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lagersted-Olsen J, Thomsen BL, Holtermann A, Søgaard K, Jørgensen MB. Does objectively measured daily duration of forward bending predict development and aggravation of low-back pain? A prospective study. Scand J Work Environ Health. 2016;42(6):528537. PubMed ID: 27606607 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Howarth SJ, Glisic D, Lee JGB, Beach TAC. Does prolonged seated deskwork alter the lumbar flexion relaxation phenomenon? J Electromyogr Kinesiol. 2013;23(3):587593. PubMed ID: 23380695 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Little JS, Khalsa PS. Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann Biomed Eng. 2005;33(3):391401. PubMed ID: 15868730 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Solomonow M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J Electromyogr Kinesiol. 2012;22(2):155175. PubMed ID: 22154465 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Viidik A. Simultaneous mechanical and light microscopic studies of collagen fibers. Z Anat Entwickl Gesch. 1972;136:204212. doi:

  • 9.

    Thornton GM, Shrive NG, Frank CB. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res. 2002;20(5):967974. PubMed ID: 12382961 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Williams ACDC, Craig KD. Updating the definition of pain. Pain. 2016;157(11):24202423. PubMed ID: 27200490 doi:

  • 11.

    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895926. PubMed ID: 19712899 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Loeser JD, Treede RD. The Kyoto protocol of IASP basic pain terminology. Pain. 2008;137(3):473477. PubMed ID: 18583048 doi:

  • 13.

    Granata KP, Rogers EL, Moorhouse K. Effects of static flexion-relaxation on paraspinal reflex behavior. Clin Biomech. 2005;20(1):1624. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Solomonow M, Zhou B-H, Baratta RV, Burger E. Biomechanics and electromyography of a cumulative lumbar disorder: response to static flexion. Clin Biomech. 2003;18(10):890898. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Rogers EL, Granata KP. Disturbed paraspinal reflex following prolonged flexion-relaxation and recovery. Spine. 2006;31(7):839845. PubMed ID: 16582860 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Abboud J, Nougarou F, Descarreaux M. Muscle activity adaptations to spinal tissue creep in the presence of muscle fatigue. PLoS One. 2016;11(2):114. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Shin G, D’Souza C, Liu Y-H. Creep and fatigue development in the low back in static flexion. Spine. 2009;34(17):18731878. PubMed ID: 19644340 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bazrgari B, Hendershot B, Muslim K, Toosizadeh N, Nussbaum MA, Madigan ML. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following repetitive lifting: influences of flexion angle and lift rate on creep-induced effects. Ergonomics. 2011;54(4):10431052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hendershot B, Bazrgari B, Muslim K, Toosizadeh N, Nussbaum MA, Madigan ML. Disturbance and recovery of trunk stiffness and reflexive muscle responses following prolonged trunk flexion: influences of flexion angle and duration. Clin Biomech. 2011;26(3):250256. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cordero-Erausquin M, Inquimbert P, Schlichter R, Hugel S. Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience. 2016;338:230247. PubMed ID: 27595888 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience. 2014;283:95106. PubMed ID: 25255936 doi:

  • 22.

    Braz JM, Solorzano C, Wang X, Basbaum AI. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron. 2014;82(3):522536. PubMed ID: 24811377 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4(8):617629. PubMed ID: 15286728 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang G, Marras WS, Best TM. The biochemical response to biomechanical tissue loading on the low back during physical work exposure. Clin Biomech. 2011;26(5):431437. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    D’Ambrosia P, King KB, Davidson BS, Zhou B-H, Lu Y, Solomonow M. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments. Eur Spine J. 2010;19(8):13301339. PubMed ID: 20336330 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Santos DFSD, Aquino BM, Jorge CO, et al. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience. 2017;358:5869. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267284. PubMed ID: 19837031 doi:

  • 28.

    Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation. 2020;17(1):127. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Sandkühler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707758. PubMed ID: 19342617 doi:

  • 30.

    Treede RD, Rolke R, Andrews K, Magerl W. Pain elicited by blunt pressure: neurobiological basis and clinical relevance. Pain. 2002;98(3):235240. PubMed ID: 12127024 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Petrini L, Matthiesen ST, Arendt-Nielsen L. The effect of age and gender on pressure pain thresholds and suprathreshold stimuli. Perception. 2015;44(5):587596. PubMed ID: 26422905 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lindstedt F, Lonsdorf TB, Schalling M, Kosek E, Ingvar M. Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS One. 2011;6(3):e17752. PubMed ID: 21423614 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Garcia E, Godoy-Izquierdo D, Godoy JF, Perez M, Lopez-Chicheri I. Gender differences in pressure pain threshold in a repeated measures assessment. Psychol Health Med. 2007;12(5):567579. PubMed ID: 17828677 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Chesterton LS, Barlas P, Foster NE, Baxter DG, Wright CC. Gender differences in pressure pain threshold in healthy humans. Pain. 2003;101(3):259266. PubMed ID: 12583868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Melia M, Schmidt M, Geissler B, et al. Measuring mechanical pain: the refinement and standardization of pressure pain threshold measurements. Behav Res Methods. 2015;47(1):216227. PubMed ID: 24570335 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kosek E, Ekholm J, Hansson P. Pressure pain thresholds in different tissues in one body region. The influence of skin sensitivity in pressure algometry. Scand J Rehabil Med. 1999;31(2):8993. PubMed ID: 10380724 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Wong WY, Wong MS. Detecting spinal posture change in sitting positions with tri-axial accelerometers. Gait Posture. 2008;27(1):168171. PubMed ID: 17419060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Luinge HJ, Veltink PH. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med Biol Eng Comput. 2005;43(2):273282. PubMed ID: 15865139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Drake JDM, Callaghan JP. Elimination of electrocardiogram contamination from electromyogram signals: an evaluation of currently used removal techniques. J Electromyogr Kinesiol. 2006;16(2):175187. PubMed ID: 16139521 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mello RGT, Oliveira LF, Nadal J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput Methods Programs Biomed. 2007;87(1):2835. PubMed ID: 17548125 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Brereton LC, McGill SM. Frequency response of spine extensors during rapid isometric contractions: effects of muscle length and tension. J Electromyogr Kinesiol. 1998;8(4):227232. PubMed ID: 9779396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dankaerts W, O’Sullivan PB, Burnett AF, Straker LM, Danneels LA. Reliability of EMG measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients. J Electromyogr Kinesiol. 2004;14(3):333342. PubMed ID: 15094147 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87(1):311. PubMed ID: 11460811 doi:

  • 44.

    Villemure C, Bushnell MC. Mood influences supraspinal pain processing separately from attention. J Neurosci. 2009;29(3):705715. PubMed ID: 19158297 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Toosizadeh N, Nussbaum MA. Creep deformation of the human trunk in response to prolonged and repetitive flexion: measuring and modeling the effect of external moment and flexion rate. Ann Biomed Eng. 2013;41(6):11501161. PubMed ID: 23525750 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Claude LN, Solomonow M, Zhou BH, Baratta RV, Zhu MP. Neuromuscular dysfunction elicited by cyclic lumbar flexion. Muscle Nerve. 2003;27(3):348358. PubMed ID: 12635122 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Parkinson RJ, Callaghan JP. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. Clin Biomech. 2009;24(2):148154. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Boschman JS, Van Der Molen HF, Sluiter JK, Frings-Dresen MHW. Occupational demands and health effects for bricklayers and construction supervisors: a systematic review. Am J Ind Med. 2011;54(1):5577. PubMed ID: 20886532 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Sánchez-Zuriaga D, Adams MA, Dolan P. Is activation of the back muscles impaired by creep or muscle fatigue? Spine. 2010;35(5):517525. PubMed ID: 20147877 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Mastaglia FL. The relationship between muscle pain and fatigue. Neuromuscul Disord. 2012;22(suppl 3):S178S180. doi:

  • 51.

    Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. Mechanisms of exercise-induced hypoalgesia. J Pain. 2014;15(12):12941304. PubMed ID: 25261342 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    North RY, Li Y, Ray P, et al. Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain. 2019;142(5):12151226. PubMed ID: 30887021 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Avona A, Burgos-Ega C, Burton MD, Akopian AN, Price TJ, Dussor G. Dural calcitonin gene-related peptide produces female-specific responses in rodent migraine models. J Neurosci. 2019;39(22):43234331. PubMed ID: 30962278 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    McGill SM, Brown S. Creep response of the lumbar spine to prolonged full flexion. Clin Biomech. 1992;7(1):4346. doi:

  • 55.

    Shin G, Mirka GA. An in vivo assessment of the low back response to prolonged flexion: interplay between active and passive tissues. Clin Biomech. 2007;22(9):965971. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Busscher I, Van Dieën JH, Van Der Veen AJ, et al. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments. Clin Biomech. 2011;26(5):438444. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Hven L, Frost P, Bonde JPE. Evaluation of pressure pain threshold as a measure of perceived stress and high job strain. PLoS One. 2017;12(1):19. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Imamura M, Chen J, Matsubayashi R, et al. Changes in pressure pain threshold in patients with chronic nonspecific low back pain. Spine. 2013;38(24):20982107. PubMed ID: 24026153 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Hirayama J, Yamagata M, Ogata S, Shimizu K, Ikeda Y, Takahashi K. Relationship between low-back pain, muscle spasm and pressure pain thresholds in patients with lumbar disc herniation. Eur Spine J. 2006;15(1):4147. PubMed ID: 15931510 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Falla D, Gizzi L, Tschapek M, Erlenwein J, Petzke F. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain. Pain. 2014;155(5):944953. PubMed ID: 24502841 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Finocchietti S, Mørch CD, Arendt-Nielsen L, Graven-Nielsen T. Effects of adipose thickness and muscle hardness on pressure pain sensitivity: correction. Clin J Pain. 2011;27(8):735745. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Beissner F, Brandau A, Henke C, et al. Quick discrimination of Adelta and C fiber mediated pain based on three verbal descriptors. PLoS One. 2010;5(9):17. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Wasner G, Lee BB, Engel S, McLachlan E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain. 2008;131(9):23872400. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    De Carvalho DE, Callaghan JP. Spine posture and discomfort during prolonged simulated driving with self-selected lumbar support prominence. Hum Factors. 2015;57(6):976987. PubMed ID: 25952903 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Buckley JP, Hedge A, Yates T, et al. The sedentary office: a growing case for change towards better health and productivity. Br J Sports Med. 2015;49(21):13571362. PubMed ID: 26034192 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Murtezani A, Ibraimi Z, Sllamniku S, Osmani T, Sherifi S. Prevalence and risk factors for low back pain in industrial workers. Folia Med. 2011;53(3):6874. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 566 566 566
Full Text Views 12 12 12
PDF Downloads 16 16 16