Dietary and Physical Activity Outcomes Determine Energy Balance in U.S. Adults Aged 50–74 Years

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $189.00

This study identified which energy expenditure (EE) and dietary intake outcomes determine EE from doubly-labeled water (DLW) in U.S. older adults (n = 681; 45.9% male; mean age 63.2). A secondary data analysis using baseline data from The Interactive Diet and Activity Tracking in AARP (IDATA) study was conducted. Stepwise linear regressions identified predictor outcomes of EE from DLW within sexes. Outcomes included data from ActiGraph accelerometers, Community Healthy Activities Model Program for Seniors (CHAMPS) self-report activity questionnaire, Automated Self-Administered 24-hour dietary recall, Dietary History Questionnaire II (DHQ II), and resting EE. Energy expenditure by ActiGraph in males predicted EE from DLW (R2 = 0.33, p < .001). EE from ActiGraph and total dietary fiber from DHQ II predicted EE from DLW in females (R2 = 0.44, p < .001). The CHAMPS closely matched EE from DLW when considering resting EE. These findings can be used to assess energy balance in a non-invasive manner in older adults.

Patterson is with the Dept. of Nutrition and Food Sciences, Institute of Health Sciences, Texas Woman’s University, Houston, TX. Wang is with the Center for Research Design & Analysis, Office of Research and Sponsored Programs, Texas Woman’s University, Houston, TX. Ortiz is with the Department of Physical Therapy, UT Health Professions, San Antonio, TX.

Address author correspondence to Mindy Patterson at mpatterson14@twu.edu.
Journal of Aging and Physical Activity
Article Sections
References
  • AlbertsonA.M.ReicksM.JoshiN. & GuggerC.K. (2016). Whole grain consumption trends and associations with body weight measures in the United States: Results from the cross sectional National Health and Nutrition Examination Survey 2001–2012. Nutrition Journal 158. doi:10.1186/s12937-016-0126-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AlmeidaG.J.IrrgangJ.J.FitzgeraldG.K.JakicicJ.M. & PivaS.R. (2016). Reliability of physical activity measures during free-living activities in people after total knee arthroplasty. Physical Therapy 96(6) 898907. doi:10.2522/ptj.20150407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American College of Sports MedicineChodzko-ZajkoW.J.ProctorD.N.Fiatarone SinghM.A.MinsonC.T.NiggC.R. & SkinnerJ.S. (2009). American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise 41(7) 15101530. doi:10.1249/MSS.0b013e3181a0c95c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BauerP.V.HamrS.C. & DucaF.A. (2016). Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cellular and Molecular Life Sciences 73(4) 737755. doi:10.1007/s00018-015-2083-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlackA.E.CowardW.A.ColeT.J. & PrenticeA.M. (1996). Human energy expenditure in affluent societies: An analysis of 574 doubly-labelled water measurements. European Journal of Clinical Nutrition 50(2) 7292.

    • Search Google Scholar
    • Export Citation
  • CalabroM.A.KimY.FrankeW.D.StewartJ.M. & WelkG.J. (2015). Objective and subjective measurement of energy expenditure in older adults: A doubly labeled water study. European Journal of Clinical Nutrition 69(7) 850855. doi:10.1038/ejcn.2014.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ColbertL.H.MatthewsC.E.HavighurstT.C.KimK. & SchoellerD.A. (2011). Comparative validity of physical activity measures in older adults. Medicine & Science in Sports & Exercise 43(5) 867876. doi:10.1249/MSS.0b013e3181fc7162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CorbettD.B.ValianiV.KnaggsJ.D. & ManiniT.M. (2016). Evaluating walking intensity with hip-worn accelerometers in elders. Medicine & Science in Sports & Exercise 48(11) 22162221. doi:10.1249/MSS.0000000000001018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CrouterS.E.ClowersK.G. & BassettD.R.Jr. (2006). A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 10013241331. doi:10.1152/japplphysiol.00818.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CrouterS.E.KuffelE.HaasJ.D.FrongilloE.A. & BassettD.R.Jr. (2010). Refined two-regression model for the ActiGraph accelerometer. Medicine & Science in Sports & Exercise 42(5) 10291037. doi:10.1249/MSS.0b013e3181c37458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlattJ.P. (1993). Dietary fat, carbohydrate balance, and weight maintenance. Annals of the New York Academy of Sciences 683122140. doi:10.1111/j.1749-6632.1993.tb35699.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FreedmanL.S.ComminsJ.M.MolerJ.E.ArabL.BaerD.J.KipnisV. & WillettW. (2014). Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. American Journal of Epidemiology 180(2) 172188. doi:10.1093/aje/kwu116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeislerC.BraunW.PourhassanM.SchweitzerL.GluerC.C.Bosy-WestphalA. & MullerM.J. (2016). Age-dependent changes in resting energy expenditure (ree): Insights from detailed body composition analysis in normal and overweight healthy caucasians. Nutrients 8(6). doi:10.3390/nu8060322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GennusoK.P.MatthewsC.E. & ColbertL.H. (2015). Reliability and validity of 2 self-report measures to assess sedentary behavior in older adults. Journal of Physical Activity & Health 12(5) 727732. doi:10.1123/jpah.2013-0546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GilesK. & MarshallA.L. (2009). Repeatability and accuracy of CHAMPS as a measure of physical activity in a community sample of older Australian adults. Journal of Physical Activity & Health 6(2) 221229. doi:10.1123/jpah.6.2.221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoranM.I. (1998). Measurement issues related to studies of childhood obesity: Assessment of body composition, body fat distribution, physical activity, and food intake. Pediatrics 101(Suppl. 2) 505518.

    • Search Google Scholar
    • Export Citation
  • GorisA.H. & WesterterpK.R. (2000). Postabsorptive respiratory quotient and food quotient-an analysis in lean and obese men and women. European Journal of Clinical Nutrition 54(7) 546550. doi:10.1038/sj.ejcn.1601052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HalterJ.B.MusiN.McFarland HorneF.CrandallJ. P.GoldbergA.HarklessL. & HighK. P. (2014). Diabetes and cardiovascular disease in older adults: Current status and future directions. Diabetes 63(8) 25782589. doi:10.2337/db14-0020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeklerE.B.BumanM.P.HaskellW.L.ConwayT.L.CainK.L.SallisJ.F. & KingA.C. (2012). Reliability and validity of CHAMPS self-reported sedentary-to-vigorous intensity physical activity in older adults. Journal of Physical Activity & Health 9(2) 225236. doi:10.1123/jpah.9.2.225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HillsA.P.MokhtarN. & ByrneN.M. (2014). Assessment of physical activity and energy expenditure: An overview of objective measures. Frontiers in Nutrition 15. doi:10.3389/fnut.2014.00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KarlJ.P.MeydaniM.BarnettJ.B.VanegasS.M.GoldinB.KaneA. & RobertsS. B. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. The American Journal of Clinical Nutrition 105(3) 589599. doi:10.3945/ajcn.116.139683

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingD.E.MainousA.G.3rd & LambourneC. A. (2012). Trends in dietary fiber intake in the United States, 1999–2008. Journal of the Academy of Nutrition and Dietetics 112(5) 642648. doi:10.1016/j.jand.2012.01.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KohA.De VadderF.Kovatcheva-DatcharyP. & BackhedF. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165(6) 13321345. doi:10.1016/j.cell.2016.05.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KuczmarskiM.E. & WeddleD.O. (2005). Position paper of the american dietetic association: Nutrition across the spectrum of aging. Journal of the American Dietetic Association 105(4) 616633. doi:10.1016/j.jada.2005.02.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LamY.Y. & RavussinE. (2016). Analysis of energy metabolism in humans: A review of methodologies. Mol Metab 5(11) 10571071. doi:10.1016/j.molmet.2016.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LichtensteinA.H.AppelL.J.BrandsM.CarnethonM.DanielsS.FranchH.A. & Wylie-RosettJ. (2006). Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 114(1) 8296. doi:10.1161/CIRCULATIONAHA.106.176158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LittleR.J.A. & RubinD.B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken, N.J.: Wiley.

  • MackeyD.C.ManiniT.M.SchoellerD.A.KosterA.GlynnN.W.GoodpasterB.H. . . . Health Aging and Body Composition Study. (2011). Validation of an armband to measure daily energy expenditure in older adults. Journal of Gerontology. Series A Biological Sciences and Medical Sciences 66(10) 11081113. doi:10.1093/gerona/glr101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ManiniT.M. (2010). Energy expenditure and aging. Ageing Research Reviews 9(1) 111. doi:10.1016/j.arr.2009.08.002

  • ManiniT.M.EverhartJ.E.PatelK.V.SchoellerD.A.ColbertL.H.VisserM. & HarrisT.B. (2006). Daily activity energy expenditure and mortality among older adults. JAMA 296(2) 171179. doi:10.1001/jama.296.2.171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MifflinM.D.St JeorS.T.HillL.A.ScottB.J.DaughertyS.A. & KohY.O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition 51(2) 241247. doi:10.1093/ajcn/51.2.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Cancer Institute. (2010). Diet history questionnaire version 2.0. Bethesda, MD: National Institutes of Health.

  • National Cancer Institute. (2011). Self-administered automated 24-hour recall (ASA24). Bethesda, MD: National Institutes of Health.

  • National Cancer Institute. (2016). Interactive diet and tracking in AARP (IDATA). Retrieved from https://biometry.nci.nih.gov/cdas/idata/

    • Export Citation
  • National Research Council (U.S.)Subcommittee on the Tenth Edition of the RDAsNational Institutes of Health (U.S.)National Research Council (U.S.)Committee on Dietary Allowances. (1989). Recommended dietary allowances (10th ed.). Washington, DC: National Academy Press.

    • Search Google Scholar
    • Export Citation
  • NdahimanaD. & KimE.K. (2017). Measurement methods for physical activity and energy expenditure: A Review. Clinical Nutrition Research 6(2) 6880. doi:10.7762/cnr.2017.6.2.68

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParkJ.KazukoI.T.KimE.KimJ. & YoonJ. (2014). Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications. Nutrition Research and Practice 8(3) 241248. doi:10.4162/nrp.2014.8.3.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrinceM.J.WuF.GuoY.Gutierrez RobledoL.M.O’DonnellM.SullivanR. & YusufS. (2015). The burden of disease in older people and implications for health policy and practice. Lancet 385(9967) 549562. doi:10.1016/S0140-6736(14)61347-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReidlingerD.P.WillisJ.M. & WhelanK. (2015). Resting metabolic rate and anthropometry in older people: A comparison of measured and calculated values. Journal of Human Nutrition and Dietetics 28(1) 7284. doi:10.1111/jhn.12215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RosarioM.G.VazquezJ.M.CruzW.I. & OrtizA. (2008). Internal consistency of the CHAMPS physical activity questionnaire for Spanish speaking older adults. Puerto Rico Health Sciences Journal 27(3) 224228.

    • Search Google Scholar
    • Export Citation
  • SawayaA.L.TuckerK.TsayR.WillettW.SaltzmanE.DallalG.E. & RobertsS.B. (1996). Evaluation of four methods for determining energy intake in young and older women: Comparison with doubly labeled water measurements of total energy expenditure. American Journal of Clinical Nutrition 63(4) 491499. doi:10.1093/ajcn/63.4.491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShaharD.R.YuB.HoustonD.K.KritchevskyS.B.NewmanA.B.SellmeyerD.E. & Body CompositionS. (2010). Misreporting of energy intake in the elderly using doubly labeled water to measure total energy expenditure and weight change. Journal of the American College of Nutrition 29(1) 1424. doi:10.1080/07315724.2010.10719812

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-OngeM.P. & GallagherD. (2010). Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26(2) 152155. doi:10.1016/j.nut.2009.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SubarA.F.KipnisV.TroianoR.P.MidthuneD.SchoellerD.A.BinghamS. & SchatzkinA. (2003). Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. American Journal of Epidemiology 158(1) 113. doi:10.1093/aje/kwg092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TedescoS.BartonJ. & O’FlynnB. (2017). A Review of activity trackers for senior citizens: Research perspectives, commercial landscape and the role of the insurance industry. Sensors (Basel) 17(6). doi:10.3390/s17061277

    • Search Google Scholar
    • Export Citation
  • TomoyasuN.J.TothM.J. & PoehlmanE.T. (1999). Misreporting of total energy intake in older men and women. Journal of the American Geriatrics Society 47(6) 710715. doi:10.1111/j.1532-5415.1999.tb01594.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van StaverenW.A.de GrootL.C.BlauwY.H. & van der WielenR.P. (1994). Assessing diets of elderly people: Problems and approaches. American Journal of Clinical Nutrition 59(Suppl. 1) 221S223S. doi:10.1093/ajcn/59.1.221S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VincentG.K.VelkoffV.A. & U.S. Census Bureau. (2010). The next four decades: he older population in the United States: 2010 to 2050. Washington, DC: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Census Bureau.

    • Search Google Scholar
    • Export Citation
  • WandersA.J.van den BorneJ.J.de GraafC.HulshofT.JonathanM.C.KristensenM. & FeskensE.J. (2011). Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials. Obesity Reviews 12(9) 724739. doi:10.1111/j.1467-789X.2011.00895.x

    • Search Google Scholar
    • Export Citation
  • WeirJ.B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 109(1–2) 19. doi:10.1113/jphysiol.1949.sp004363

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 67 67 16
Full Text Views 7 7 4
PDF Downloads 4 4 3
Altmetric Badge
PubMed
Google Scholar