Effects of Age, Power Output, and Cadence on Energy Expenditure and Lower Limb Antagonist Muscle Coactivation During Cycling

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

It is unknown if higher antagonist muscle coactivation is a factor contributing to greater energy expenditure of cycling in older adults. We determined how age, power output, and cadence affect energy expenditure and lower limb antagonist muscle coactivation during submaximal cycling. Thirteen younger and 12 older male participants completed 6-min trials at four power output-cadence conditions (75 W-60 rpm, 75 W-90 rpm, 125 W-60 rpm, and 125 W-90 rpm) while electromyographic and metabolic energy consumption data were collected. Knee and ankle coactivation indices were calculated using vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior electromyography data. Energy expenditure of cycling was greater in older compared with younger participants at 125 W (p = .002) and at 90 rpm (p = .026). No age-related differences were observed in the magnitude or duration of coactivation about the knee or ankle (p > .05). Our results indicated that the knee and ankle coactivation is not a substantive factor contributing to greater energy expenditure of cycling in older adults.

Buddhadev is with the Dept. of Health and Human Development, Western Washington University, Bellingham, WA. Martin is with the Dept. of Kinesiology, Iowa State University, Ames, IA.

Address author correspondence to Harsh H. Buddhadev at Harsh.Buddhadev@wwu.edu.
  • Adamczyk, P.G., Collins, S.H., & Kuo, A.D. (2006). The advantages of a rolling foot in human walking. Journal of Experimental Biology, 209(20), 3953–3963. doi:10.1242/jeb.02455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036–1043. PubMed ID: 20696597 doi:10.1016/j.jelekin.2010.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B.S., & Li, L. (2003). Lower extremity muscle activities during cycling are influenced by load and frequency. Journal of Electromyography and Kinesiology, 13(2), 181–190. PubMed ID: 12586523 doi:10.1016/S1050-6411(02)00110-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M.P., & Ferguson, R.A. (2009). Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women. Journal of Applied Physiology, 107(3), 763–769. PubMed ID: 19589952 doi:10.1152/japplphysiol.91654.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belli, A., & Hintzy, F. (2002). Influence of pedalling rate on the energy cost of cycling in humans. European Journal of Applied Physiology, 88(1–2), 158–162. PubMed ID: 12436285 doi:10.1007/s00421-002-0674-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigland-Ritchie, B., & Woods, J.J. (1974). Integrated EMG and oxygen uptake during dynamic contractions of human muscles. Journal of Applied Physiology, 36(4), 475–479. PubMed ID: 4820333 doi:10.1152/jappl.1974.36.4.475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisswalter, J., Wu, S.S., Sultana, F., Bernard, T., & Abbiss, C.R. (2014). Age difference in efficiency of locomotion and maximal power output in well-trained triathletes. European Journal of Applied Physiology, 114(12), 2579–2586. PubMed ID: 25118840 doi:10.1007/s00421-014-2977-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brockway, J.M. (1987). Derivation of formulae used to calculate energy expenditure in man. Human Nutrition: Clinical Nutrition, 41(6), 463–471.

    • Search Google Scholar
    • Export Citation
  • Candotti, C.T., Loss, J.F., Bagatini, D., Soares, D.P., da Rocha, E.K., de Oliveira, A.R., & Guimaraes, A.C. (2009). Cocontraction and economy of triathletes and cyclists at different cadences during cycling motion. Journal of Electromyography and Kinesiology, 19(5), 915–921. PubMed ID: 18539044 doi:10.1016/j.jelekin.2008.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavarren, J., & Calbet, J.A.L. (1999). Cycling efficiency and pedalling frequency in road cyclists. European Journal of Applied Physiology, 80(6), 555–563. doi:10.1007/s004210050634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Gaesser, G.A., & Brooks, G.A. (1975). Muscular efficiency during steady-rate exercise: Effects of speed and work rate. Journal of Applied Physiology, 38(6), 1132–1139. PubMed ID: 1141128 doi:10.1152/jappl.1975.38.6.1132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregor, R.J., Cavanagh, P.R., & LaFortune, M. (1985). Knee flexor moments during propulsion in cycling--a creative solution to Lombard’s Paradox. Journal of Biomechanics, 18(5), 307–316. PubMed ID: 4008501 doi:10.1016/0021-9290(85)90286-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagood, S., Solomonow, M., Baratta, R., Zhou, B.H., & D’Ambrosia, R. (1990). The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. American Journal of Sports Medicine, 18(2), 182–187. PubMed ID: 2343987 doi:10.1177/036354659001800212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermens, H.J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopker, J.G., Coleman, D.A., Gregson, H.C., Jobson, S.A., Von der Haar, T., Wiles, J., & Passfield, L. (2013). The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. Journal of Applied Physiology, 115(5), 723–729. PubMed ID: 23813527 doi:10.1152/japplphysiol.00361.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., & DeVita, P. (2000). Muscle pre- and coactivity during downward stepping are associated with leg stiffness in aging. Journal of Electromyography and Kinesiology, 10(2), 117–126. doi:10.1016/S1050-6411(99)00026-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., & DeVita, P. (2006). Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exercise and Sport Sciences Reviews, 34(1), 29–35. doi:10.1097/00003677-200601000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., Finch, A., Solnik, S., Rider, P., & DeVita, P. (2011). Association between muscle activation and metabolic cost of walking in young and old adults. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 66(5), 541–547. doi:10.1093/gerona/glr008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., Solnik, S., Gruber, A., Rider, P., Steinweg, K., Helseth, J., & DeVita, P. (2009). Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait & Posture, 29(4), 558–564. doi:10.1016/j.gaitpost.2008.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182–198. PubMed ID: 18093842 doi:10.1016/j.jelekin.2007.10.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hug, F., Turpin, N.A., Couturier, A., & Dorel, S. (2011). Consistency of muscle synergies during pedaling across different mechanical constraints. Journal of Neurophysiology, 106(1), 91–103. PubMed ID: 21490282 doi:10.1152/jn.01096.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorge, M., & Hull, M.L. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 19(9), 683–694. PubMed ID: 3793743 doi:10.1016/0021-9290(86)90192-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kallio, J., Sogaard, K., Avela, J., Komi, P., Selanne, H., & Linnamo, V. (2012). Age-related decreases in motor unit discharge rate and force control during isometric plantar flexion. Journal of Electromyography and Kinesiology, 22(6), 983–989. PubMed ID: 22749379 doi:10.1016/j.jelekin.2012.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenney, W.L., Wilmore, J., & Costill, D. (2011). Physiology of sport and exercise (5th ed.). Champaign, IL: Human Kinetics.

  • Korff, T., Newstead, A.H., van Zandwijk, R., & Jensen, J.L. (2014). Age- and activity-related differences in the mechanisms underlying maximal power production in young and older adults. Journal of Applied Biomechanics, 30(1), 12–20. PubMed ID: 23549340 doi:10.1123/jab.2013-0037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacIntosh, B.R., Neptune, R.R., & Horton, J.F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281–1287. PubMed ID: 10912894 doi:10.1097/00005768-200007000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malatesta, D., Simar, D., Dauvilliers, Y., Candau, R., Borrani, F., Prefaut, C., & Caillaud, C. (2003). Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. Journal of Applied Physiology, 95(6), 2248–2256. PubMed ID: 12882986 doi:10.1152/japplphysiol.01106.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, A.P., & Martin, P.E. (1993). The association between cycling experience and preferred and most economical cadences. Medicine & Science in Sports & Exercise, 25(11), 1269–1274. PubMed ID: 8289615

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, A.P., & Martin, P.E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine & Science in Sports & Exercise, 27(2), 217–225. PubMed ID: 7723645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, P.E., Rothstein, D.E., & Larish, D.D. (1992). Effects of age and physical activity status on the speed-aerobic demand relationship of walking. Journal of Applied Physiology, 73(1), 200–206. PubMed ID: 1506370 doi:10.1152/jappl.1992.73.1.200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mian, O.S., Thom, J.M., Ardigo, L.P., Narici, M.V., & Minetti, A.E. (2006). Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica, 186(2), 127–139. PubMed ID: 16497190 doi:10.1111/j.1748-1716.2006.01522.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Momeni, K., & Faghri, P.D. (2015). Aging and muscle activity patterns during cycling. International Journal of Physical Medicine and Rehabiliatation, 3(5), 1–7.

    • Search Google Scholar
    • Export Citation
  • Neptune, R.R., Kautz, S.A., & Hull, M.L. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051–1058. PubMed ID: 9391872 doi:10.1016/S0021-9290(97)00071-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilwik, R., Snijders, T., Leenders, M., Groen, B.B., van Kranenburg, J., Verdijk, L.B., & van Loon, L.J. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental Gerontology, 48(5), 492–498. PubMed ID: 23425621 doi:10.1016/j.exger.2013.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeen-Snyder, K.S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine and Science in Sports, 9(2), 113–117. PubMed ID: 895427

    • Search Google Scholar
    • Export Citation
  • Ortega, J.D., & Farley, C.T. (2015). Effects of aging on mechanical efficiency and muscle activation during level and uphill walking. Journal of Electromyography and Kinesiology, 25(1), 193–198. PubMed ID: 25263547 doi:10.1016/j.jelekin.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peiffer, J., Abbiss, C.R., Sultana, F., Bernard, T., & Brisswalter, J. (2016). Comparison of the influence of age on cycling efficiency and the energy cost of running in well-trained triathletes. European Journal of Applied Physiology, 116(1), 195–201. PubMed ID: 26392273 doi:10.1007/s00421-015-3264-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D.S., & Martin, P.E. (2010). Effects of age and walking speed on coactivation and cost of walking in healthy adults. Gait and Posture, 31(3), 355–359. PubMed ID: 20106666 doi:10.1016/j.gaitpost.2009.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, M.M., & Gregor, R.J. (1992). EMG profiles of lower extremity muscles during cycling at constant workload and cadence. Journal of Electromyography and Kinesiology, 2(2), 69–80. PubMed ID: 20719600 doi:10.1016/1050-6411(92)90018-E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacchetti, M., Lenti, M., Di Palumbo, A.S., & De Vito, G. (2010). Different effect of cadence on cycling efficiency between young and older cyclists. Medicine & Science in Sports & Exercise, 42(11), 2128–2133. PubMed ID: 20386335

    • Search Google Scholar
    • Export Citation
  • Samozino, P., Horvais, N., & Hintzy, F. (2006). Interactions between cadence and power output effects on mechanical efficiency during sub maximal cycling exercises. European Journal of Applied Physiology, 97(1), 140–140. PubMed ID: 16450165 doi:10.1007/s00421-006-0172-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, D.J., & Amoroso, A.T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), 465–471. PubMed ID: 19042140 doi:10.1016/j.jelekin.2008.09.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, A., Silder, A., Heiderscheit, B., Mahoney, J., & Thelen, D.G. (2009). Differences in lower-extremity muscular activation during walking between healthy older and young adults. Journal of Electromyography and Kinesiology, 19(6), 1085–1091. PubMed ID: 19081734 doi:10.1016/j.jelekin.2008.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silberman, M.R., Webner, D., Collina, S., & Shiple, B.J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271–276. PubMed ID: 16003043 doi:10.1097/01.jsm.0000171255.70156.da

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, J., Taylor, P.J., Hebron, J., Brooks, D., Hurst, H.T., & Atkins, S. (2015). The reliability of electromyographic normalization methods for cycling analyses. Journal of Human Kinetics, 46, 19–27. PubMed ID: 26240645 doi:10.1515/hukin-2015-0030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solnik, S., Rider, P., Steinweg, K., DeVita, P., & Hortobagyi, T. (2010). Teager-Kaiser energy operator signal conditioning improves EMG onset detection. European Journal of Applied Physiology, 110(3), 489–498. PubMed ID: 20526612 doi:10.1007/s00421-010-1521-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umberger, B.R., Gerritsen, K.G.M., & Martin, P.E. (2006). Muscle fiber type effects on energetically optimal cadences in cycling. Journal of Biomechanics, 39(8), 1472–1479. PubMed ID: 15923008 doi:10.1016/j.jbiomech.2005.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weir, J.B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology, 109(1–2), 1–9. PubMed ID: 15394301 doi:10.1113/jphysiol.1949.sp004363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken, NJ: John Wiley & Sons.

All Time Past Year Past 30 Days
Abstract Views 119 119 17
Full Text Views 13 13 2
PDF Downloads 6 6 2