Interday Reliability of the IDEEA Activity Monitor for Measuring Movement and Nonmovement Behaviors in Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The interday reliability of the Intelligent Device for Energy Expenditure and Activity (IDEEA) has not been studied to date. The study purpose was to examine the interday variability and reliability on two consecutive days collected with the IDEEA, as well as to predict the number of days needed to provide a reliable estimate of several movement (walking and climbing stairs) and nonmovement (lying, reclining, and sitting) behaviors and standing in older adults. The sample included 126 older adults (74 women) who wore the IDEEA for 48 hr. Results showed low variability between the 2 days, and the reliability was from moderate (intraclass coefficient correlation = .34) to high (.80) in most of movement and nonmovement behaviors analyzed. The Bland–Altman plots showed high–moderate agreement between days, and the Spearman–Brown formula estimated that 1.2 and 9.1 days of monitoring with the IDEEA are needed to achieve intraclass coefficient correlations ≥ .70 in older adults for sitting and climbing stairs, respectively.

de la Cámara, Higueras-Fresnillo, Martinez-Gomez, and Veiga are with the Dept. of Physical Education, Sport and Human Movement, Faculty of Teacher Training and Education, University Autonomous of Madrid, Madrid, Spain. Martinez-Gomez is also with IMDEA Food Institute, University Autonomous of Madrid, Madrid, Spain; and CSIC, Madrid, Spain.

Address author correspondence to Miguel Ángel de la Cámara at miguel.camara@uam.es.
  • Aadland, E., & Ylvisåker, E. (2015). Reliability of objectively measured sedentary time and physical activity in adults. PLoS ONE, 10(7), 1–13. doi:10.1371/journal.pone.0133296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, A., van den Hoek, D., Barnett, D., & Cerin, E. (2016). Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer. BMC Geriatrics, 16(1), 211. PubMed ID: 27931188 doi:10.1186/s12877-016-0380-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., John, D., Conger, S.A., Rider, B.C., Passmore, R.M., & Clark, J.M. (2014). Detection of lying down, sitting, standing, and stepping using two activPAL monitors. Medicine & Science in Sports & Exercise, 46(10), 2025–2029. PubMed ID: 24598698 doi:10.1249/MSS.0000000000000326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemes, S.A., Matchett, N., & Wane, S.L. (2007). Reactivity: An issue for short-term pedometer studies? British Journal of Sports Medicine, 42(1), 68–70. doi:10.1136/bjsm.2007.038521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cust, A.E., Smith, B.J., Chau, J., van der Ploeg, H.P., Friedenreich, C.M., Armstrong, B.K., & Bauman, A. (2008). Validity and repeatability of the EPIC physical activity questionnaire: A validation study using accelerometers as an objective measure. International Journal of Behavioral Nutrition and Physical Activity, 5, 33. PubMed ID: 18513450 doi:10.1186/1479-5868-5-33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, C.B., Fitzgerald, A.P., Kearney, P.M., Perry, I.J., Rennie, K.L., Kozarski, R., & Phillips, C.M. (2016). Number of days required to estimate habitual activity using wrist-worn GENEActiv accelerometer: A cross-sectional study. PLoS ONE, 11(5), 0109913. doi:10.1371/journal.pone.0109913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falck, R.S., McDonald, S.M., Beets, M.W., Brazendale, K., & Liu-Ambrose, T. (2016). Measurement of physical activity in older adult interventions: A systematic review. British Journal of Sports Medicine, 50(8), 464–470. PubMed ID: 26276362 doi:10.1136/bjsports-2014-094413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falk, R., Landry, G., Brazendale, K., & Liu-Ambrose, T. (2017). Measuring physical activity in older adults using MotionWatch 8© actigraphy: How many days are needed? Journal of Aging & Physical Activity, 25(1), 51–57. doi:10.1123/japa.2015-0256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómez-Cabello, A., Pedrero-Chamizo, R., Olivares, P.R., Hernández-Perera, R., Rodríguez-Marroyo, J.A., Mata, E., . . . Vicente-Rodríguez, G. (2012). Sitting time increases the overweight and obesity risk independently of walking time in elderly people from Spain. Maturitas, 73(4), 337–343. doi:10.1016/j.maturitas.2012.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorelick, M.L., Bizzini, M., Maffiuletti, N.A., Munzinger, J.P., & Munzinger, U. (2009). Test-retest reliability of the IDEEA system in the quantification of step parameters during walking and stair climbing. Clinical Physiology and Functional Imaging, 29(4), 271–276. PubMed ID: 19302230 doi:10.1111/j.1475-097X.2009.00864.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, T.L., Swartz, A.M., Cashin, S.E., & Strath, S.J. (2011). How many days of monitoring predict physical activity and sedentary behaviour in older adults? International Journal of Behavioral Nutrition and Physical Activity, 8(1), 62. doi:10.1186/1479-5868-8-62

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerome, G.J., Young, D.R., Laferriere, D.A.N., Chen, C., & Vollmer, W.M. (2009). Reliability of RT3 accelerometers among overweight and obese adults. Medicine & Science in Sports & Exercise, 41(1), 110–114. PubMed ID: 19092700 doi:10.1249/MSS.0b013e3181846cd8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y., & Larson, J.L. (2013). IDEEA activity monitor: Validity of activity recognition for lying, reclining, sitting and standing. Frontiers of Medicine in China, 7(1), 126–131. doi:10.1007/s11684-012-0236-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klenk, J., Büchele, G., Lindemann, U., Kaufmann, S., Peter, R., Laszlo, R., . . . Rothenbacher, D. (2016). Concurrent validity of activPAL and activPAL3 accelerometers in older adults. Journal of Aging & Physical Activity, 24(3), 444–450. PubMed ID: 26751290 doi:10.1123/japa.2015-0178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klenk, J., Büchele, G., Rapp, K., Franke, S., & Peter, R. (2012). Walking on sunshine: Effect of weather conditions on physical activity in older people. Journal of Epidemiology & Community Health, 66(5), 474–476. PubMed ID: 21325149 doi:10.1136/jech.2010.128090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocherginsky, M., Huisingh-scheetz, M., Dale, W., Lauderdale, S., & Waite, L. (2017). Measuring physical activity with hip accelerometry among U.S. older adults: How many days are enough? PLoS ONE, 12(1), e0170082. doi:10.1371/journal.pone.0170082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.-M., & Shiroma, E.J. (2014). Using accelerometers to measure physical activity in large-scale epidemiological studies: Issues and challenges. British Journal of Sports Medicine, 48(3), 197–201. PubMed ID: 24297837 doi:10.1136/bjsports-2013-093154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, B.A., Napolitano, M.A., Buman, M.P., Williams, D.M., & Nigg, C.R. (2017). Future directions in physical activity intervention research: Expanding our focus to sedentary behaviors, technology, and dissemination. Journal of Behavioral Medicine, 40(1), 112–126. PubMed ID: 27722907 doi:10.1007/s10865-016-9797-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay Smith, G., Banting, L., Eime, R., O’sullivan, G., & van Uffelen, J.G.Z. (2017). The association between social support and physical activity in older adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 56. PubMed ID: 28449673 doi:10.1186/s12966-017-0509-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., John, D., Dall, P., & Granat, M.H. (2016). Differentiating sitting and lying using a thigh-worn accelerometer. Medicine & Science in Sports & Exercise, 48(4), 742–747. PubMed ID: 26516691 doi:10.1249/MSS.0000000000000804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Ainsworth, B.E., Thompson, R.W., & Bassett, D.R.J. (2002). Sources of variance in daily physical activity levels as measured by an accelerometer. Medicine & Science in Sports & Exercise, 34(8), 1376–1381. PubMed ID: 12165695 doi:10.1097/00005768-200208000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, A., Fritz, S.L., & Lusardy, M. (2015). Walking speed: The functional vital sing. Journal of Aging & Physical Activity, 23(2), 314–322. PubMed ID: 24812254 doi:10.1123/japa.2013-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolai, S., Benzinger, P., Skelton, D.A., Aminian, K., Becker, C., & Lindemann, U. (2010). Day-to-day variability of physical activity of older adults living in the community. Journal of Aging & Physical Activity, 18(1), 75–86. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=105280596&site=ehost-live

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rejeski, W.J., Marsh, A.P., Brubaker, P.H., Buman, M., Fielding, R.A., Hire, D., . . . Miller, M.E. (2016). Analysis and Interpretation of accelerometry data in older adults: The LIFE study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 71(4), 521–528. PubMed ID: 26515258 doi:10.1093/gerona/glv204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, D.A., Kemble, C.D., Robinson, T.S., & Mahar, M.T. (2007). Daily walking in older adults: Day-to-day variability and criterion-referenced validity of total daily step counts. Journal of Physical Activity & Health, 4(4), 434–446. PubMed ID: 18209234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrack, J.A., Cooper, R., Koster, A., Shiroma, E.J., Murabito, J.M., Rejeski, W.J., . . . Harris, T.B. (2016). Assessing daily physical activity in older adults: Unraveling the complexity of monitors, measures, and methods.  Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 71(8), 1039–1048. doi:10.1093/gerona/glw026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shephard, R.J. (2003). Limits to the measurement of habitual physical activity by questionnaires. British Journal of Sports Medicine, 37(3), 197–206. PubMed ID: 12782543 doi:10.1136/bjsm.37.3.197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taraldsen, K., Chastin, S.F.M., Riphagen, I.I., Vereijken, B., & Helbostad, J.L. (2012). Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas, 71(1), 13–19. PubMed ID: 22134002 doi:10.1016/j.maturitas.2011.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, L.M., Klenk, J., Maney, A.J., Kerse, N., Macdonald, B.M., & Maddison, R. (2014). Validation of a body-worn accelerometer to measure activity patterns in octogenarians. Archives of Physical Medicine and Rehabilitation, 95(5), 930–934. PubMed ID: 24486241 doi:10.1016/j.apmr.2014.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., & Mcdowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40, 181–188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Burkett, L., Reis, J.P., Ainsworth, B.E., Macera, C.A., & Wilson, D.K. (2005). How many days of pedometer monitoring predict weekly physical activity in adults? Preventive Medicine, 40(3), 293–298. PubMed ID: 15533542 doi:10.1016/j.ypmed.2004.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Ploeg, P., Chey, T., Korda, R.J., Banks, E., & Bauman, A. (2012). Sitting time and all-cause mortality risk in 222 497 Australian adults. Archives of Internal Medicine, 172(6), 494–500. PubMed ID: 22450936 doi:10.1001/archinternmed.2011.2174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Schooten, K.S., Rispens, S.M., Elders, P.J.M., Lips, P., Van Dieën, J.H., & Pijnappels, M. (2015). Assessing physical activity in older adults: Required days of trunk accelerometer measurements for reliable estimation. Journal of Aging & Physical Activity, 23, 9–17. PubMed ID: 24306934 doi:10.1123/JAPA.2013-0103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wareham, N.J., & Rennie, K.L. (1998). The assessment of physical activity in individuals and populations: Why try to be more precise about how physical activity is assessed? International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 22(Suppl. 2), S30–38. PubMed ID: 15592489

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Werner, P., Sun, M., Pi-Sunyer, F.X., & Boozer, C.N. (2003). Measurement of human daily physical activity. Obesity Research, 11(1), 33–40. PubMed ID: 12529483 doi:10.1038/oby.2003.7

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 69 69 6
Full Text Views 15 15 1
PDF Downloads 3 3 1