The Effects of Omega-3 and Branched-Chain Amino Acids Supplementation on Serum Apoptosis Markers Following Acute Resistance Exercise in Old Men

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The potential benefits of omega-3 fatty acids and branched-chain amino acids (BCAAs) supplements on exercise-induced apoptosis are not clear. In a crossover randomized study, 11 men (age = 62.8 ± 2.2 years) performed an acute bout of resistance exercise and underwent 1-week supplementation with either 20 g of BCAA or 2,700 mg of omega-3/day. Subjects performed the same exercise after supplementation protocols. Following a 3-week washout period, subjects switched groups. Circulating levels of soluble Fas ligand (sFasL), cytochrome c, Bax, Bcl-2, and nuclear factor-kappa B were measured before and immediately after exercise sessions. sFasL, cytochrome c, and Bax increased after exercise. Simple main effect of time on sFasl was significant in control trial but not in omega-3 and BCAA trials. There were no differences in nuclear factor-kappa B and Bcl-2 between control and supplement trials. This study showed that adding omega-3 fatty acids or BCAA to the dietary regime of old men could partially attenuate resistance exercise-induced apoptosis.

Sheikholeslami-Vatani is with the Dept. of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran. Ahmadi is with Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; and the Dept. of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. Faraji is with the Dept. of Physical Education and Sports Science, Marivan Branch, Islamic Azad University, Marivan, Iran.

Address author correspondence to Slahadin Ahmadi at slahadin@yahoo.com.
  • Adhihetty, P.J., Ljubicic, V., & Hood, D.A. (2007). Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle. American Journal of Physiology: Endocrinology and Metabolism, 292, 748–755. PubMed ID: 17106065 doi:10.1152/ajpendo.00311.2006

    • Search Google Scholar
    • Export Citation
  • Atashak, S., Sharafi, H., Azarbayjani, M.A., Stannard, S., Goli, M., & Haghigi, M. (2013). Effect of omega-3 supplementation on the blood levels of oxidative stress, muscle damage and inflammation markers after acute resistance exercise in young athletes. Kinesiology, 45, 22–29.

    • Search Google Scholar
    • Export Citation
  • Beere, H.M. (2005). Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways. Journal of Clinical Investigation, 115, 2633–2639. PubMed ID: 16200196 doi:10.1172/JCI26471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boroujerdi, S., & Rahimi, R. (2011). The apoptotic response to resistance exercise with different intensities in athletes. Medcina Dello Sport, 64, 31–44.

    • Search Google Scholar
    • Export Citation
  • Boucher, J., Macotela, Y., Bezy, O., Mori, M.A., Kriauciunas, K., & Kahn, C.R. (2010). A kinase-independent role for unoccupied insulin and IGF-1 receptors in the control of apoptosis. Science Signaling, 3, ra87. PubMed ID: 21139139 doi:10.1126/scisignal.2001173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carotenuto, F., Minieri, M., Monego, G., Fiaccavento, R., Bertoni, A., Sinigaglia, F., . . . Di Nardo, P. (2013). A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. Cardiovascular Research, 100, 422–431. PubMed ID: 24042018 doi:10.1093/cvr/cvt211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho-Silva, M., Gomes, L.M., Scaini, G., Rebelo, J., Damiani, A.P., Pereira, M., . . . Schuck, P.F. (2017). Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metabolic Brain Disease, 32(4), 1043–1050. PubMed ID: 28315992 doi:10.1007/s11011-017-9994-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., . . . Carruba, M.O. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabolism, 12, 362–372. doi:10.1016/j.cmet.2010.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516. PubMed ID: 17562483 doi:10.1080/01926230701320337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faraji, H., Rahimi, R., Sheikholeslami, V.D., & Jafaari, A. (2016). Apoptosis response to different rest periods after resistance exercise in athletes. Medicina Dello Sport, 69, 173–183.

    • Search Google Scholar
    • Export Citation
  • Ferrer, M.D., Tauler, P., Sureda, A., Tur, J.A., & Pons, A. (2009). Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise. Journal of Sports Sciences, 27, 49–58. PubMed ID: 19031335 doi:10.1080/02640410802409683

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghanei, E., Zeinali, J., Borghei, M., & Homayouni, M. (2012). Efficacy of omega-3 fatty acids supplementation in treatment of uremic pruritus in hemodialysis patients: A double-blind randomized controlled trial. Iranian Red Crescent Medical Journal, 14, 515. PubMed ID: 23115713

    • Search Google Scholar
    • Export Citation
  • Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2006). Multiple pathways of cytochrome C release from mitochondria in apoptosis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757, 639–647. doi:10.1016/j.bbabio.2006.03.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomaa, A.M., & El-Aziz, E.A.A. (2016). Omega-3 fatty acids decreases oxidative stress, tumor necrosis factor-alpha, and interleukin-1 beta in hyperthyroidism-induced hepatic dysfunction rat model. Pathophysiology, 23, 295–301. PubMed ID: 27793418 doi:10.1016/j.pathophys.2016.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gualano, A., Bozza, T., Lopes, D.C.P., Roschel, H., Dos Santos, C.A., Luiz, M.M., . . . Herbert, L.J.A. (2011). Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. The Journal of Sports Medicine and Physical Fitness, 51, 82–88. PubMed ID: 21297567

    • Search Google Scholar
    • Export Citation
  • Ichikura, T., Majima, T., Uchida, T., Okura, E., Ogawa, T., & Mochizuki, H. (2001). Plasma soluble Fas ligand concentration: Decrease in elderly men and increase in patients with gastric carcinoma. Oncology Reports, 8, 311–314. PubMed ID: 11182046

    • Search Google Scholar
    • Export Citation
  • Jouris, K.B., McDaniel, J.L., & Weiss, E.P. (2011). The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. Journal of Sports Science & Medicine, 10, 432. PubMed ID: 24150614

    • Search Google Scholar
    • Export Citation
  • Juric, V., Chen, C.-C., & Lau, L.F. (2009). Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Molecular and Cellular Biology, 29, 3266–3279. PubMed ID: 19364818 doi:10.1128/MCB.00064-09

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kangas, R., Törmäkangas, T., Heinonen, A., Alen, M., Suominen, H., Kovanen, V., . . . Korhonen, M.T. (2017). Declining physical performance associates with Serum FasL, miR-21, and miR-146a in aging sprinters. BioMed Research International, 2017, 8468469. PubMed ID: 28127562 doi:10.1155/2017/8468469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantari, C., & Walczak, H. (2011). Caspase-8 and bid: Caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 558–563. doi:10.1016/j.bbamcr.2011.01.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavathia, N., Jain, A., Walston, J., Beamer, B.A., & Fedarko, N.S. (2009). Serum markers of apoptosis decrease with age and cancer stage. Aging, 1, 652–663. PubMed ID: 20157546 doi:10.18632/aging.100069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerksick, C., Taylor, L., 4th, Harvey, A., & Willoughby, D. (2008). Gender-related differences in muscle injury, oxidative stress, and apoptosis. Medicine & Science in Sports & Exercise, 40, 1772–1780. PubMed ID: 18799987 doi:10.1249/MSS.0b013e31817d1cce

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerksick, C.M., Kreider, R.B., & Willoughby, D.S. (2010). Intramuscular adaptations to eccentric exercise and antioxidant supplementation. Amino Acids, 39, 219–232. PubMed ID: 19967420 doi:10.1007/s00726-009-0432-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Triolo, M., & Hood, D.A. (2017). Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Medicine and Cellular Longevity, 2017, 3165396. PubMed ID: 28656072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koçtürk, S., Kayatekin, B., Resmi, H., Açıkgöz, O., Kaynak, C., & Özer, E. (2008). The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. European Journal of Applied Physiology, 102, 515–524. doi:10.1007/s00421-007-0612-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korenaga, M., Nishina, S., Korenaga, K., Tomiyama, Y., Yoshioka, N., Hara, Y., . . . Hino, K. (2015). Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice. Liver International, 35, 1303–1314. PubMed ID: 25156780 doi:10.1111/liv.12675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwahata, M., Kubota, H., Kanouchi, H., Ito, S., Ogawa, A., Kobayashi, Y., & Kido, Y. (2012). Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutrition Research, 32, 522–529. PubMed ID: 22901560 doi:10.1016/j.nutres.2012.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwak, H.-B. (2013). Effects of aging and exercise training on apoptosis in the heart. Journal of Exercise Rehabilitation, 9, 212–219. PubMed ID: 24278863 doi:10.12965/jer.130002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima-Cabello, E., Cuevas, M.J., Garatachea, N., Baldini, M., Almar, M., & González-Gallego, J. (2010). Eccentric exercise induces nitric oxide synthase expression through nuclear factor-κB modulation in rat skeletal muscle. Journal of Applied Physiology, 108, 575–583. PubMed ID: 20044475 doi:10.1152/japplphysiol.00816.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, R.M., Stringer, A.M., Bowen, J.M., Gibson, R.J., Sonis, S.T., & Keefe, D.M. (2008). Serum levels of NF-κB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biology & Therapy, 7, 1139–1145. PubMed ID: 18535404 doi:10.4161/cbt.7.7.6207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., Chen, H.-D., & Hong-Guang, H.-G. (2012). The relationship between apoptosis and aging. Advances in Bioscience and Biotechnology, 3, 705–711. doi:10.4236/abb.2012.326091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monirujjaman, M., & Ferdouse, A. (2014). Metabolic and physiological roles of branched-chain amino acids. Advances in Molecular Biology, 2014, 364976. doi:10.1155/2014/364976

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicastro, H., da Luz, C.R., Chaves, D.F.S., Bechara, L.R.G., Voltarelli, V.A., Rogero, M.M., & Lancha, A.H. (2012). Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. Journal of Nutrition and Metabolism, 2012, 136937. PubMed ID: 22536489 doi:10.1155/2012/136937

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oeckinghaus, A., Hayden, M.S., & Ghosh, S. (2011). Crosstalk in NF-κB signaling pathways. Nature Immunology, 12(8), 695–708. PubMed ID: 21772278 doi:10.1038/ni.2065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K.-S., Sedlock, D.A., Navalta, J.W., Lee, M.-G., & Kim, S.-H. (2011). Leukocyte apoptosis and pro-/anti-apoptotic proteins following downhill running. European Journal of Applied Physiology, 111, 2349–2357. PubMed ID: 21424274 doi:10.1007/s00421-011-1907-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, J.M., Bryner, R.W., Sindler, A., Frisbee, J.C., & Alway, S.E. (2008). Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise. Journal of Applied Physiology, 105, 1934–1943. PubMed ID: 18832755 doi:10.1152/japplphysiol.00037.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phaneuf, S., & Leeuwenburgh, C. (2001). Apoptosis and exercise. Medicine and Science in Sports and Exercise, 33, 393–396. PubMed ID: 11252065 doi:10.1097/00005768-200103000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podhorska-Okołów, M., Dziegiel, P., Dolińska-Krajewska, B., Dumańska, M., Cegielski, M., Jethon, Z., . . . Zabel, M. (2006). Expression of metallothionein in renal tubules of rats exposed to acute and endurance exercise. Folia Histochemica et Cytobiologica, 44, 195–200.

    • Search Google Scholar
    • Export Citation
  • Quadrilatero, J., Alway, S.E., & Dupont-Versteegden, E.E. (2011). Skeletal muscle apoptotic response to physical activity: Potential mechanisms for protection. Applied Physiology, Nutrition, and Metabolism, 36, 608–617. PubMed ID: 21936642 doi:10.1139/h11-064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrilatero, J., Bombardier, E., Norris, S.M., Talanian, J.L., Palmer, M.S., Logan, H.M, . . . Spriet, L.L. (2010). Prolonged moderate-intensity aerobic exercise does not alter apoptotic signaling and DNA fragmentation in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 298, E534–E547. PubMed ID: 19996388 doi:10.1152/ajpendo.00678.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ra, S.-G., Miyazaki, T., Ishikura, K., Nagayama, H., Komine, S., Nakata, Y., . . . Ohmori, H. (2013). Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. Journal of the International Society of Sports Nutrition, 10, 51. PubMed ID: 24195702 doi:10.1186/1550-2783-10-51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, R. (2011). Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. Journal of Strength and Conditioning Research, 25, 3448–3455. PubMed ID: 22080314 doi:10.1519/JSC.0b013e3182162f2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, R., Mirzaei, B., Rahmani-Nia, F., & Salehi, Z. (2015). Effects of creatine monohydrate supplementation on exercise-induced apoptosis in athletes: A randomized, double-blind, and placebo-controlled study. Journal of Research in Medical Sciences, 20, 733. doi:10.4103/1735-1995.168320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, Y., & Distelhorst, C.W. (2008). Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis. Annual Review of Physiology, 70, 73–91. PubMed ID: 17680735 doi:10.1146/annurev.physiol.70.021507.105852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharafi, H., & Rahimi, R. (2012). The effect of resistance exercise on p53, caspase-9, and caspase-3 in trained and untrained men. Journal of Strength & Conditioning Research, 26, 1142–1148. PubMed ID: 22446679 doi:10.1519/JSC.0b013e31822e58e5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G.I., Julliand, S., Reeds, D.N., Sinacore, D.R., Klein, S., & Mittendorfer, B. (2015). Fish oil–derived n–3 PUFA therapy increases muscle mass and function in healthy older adults. The American Journal of Clinical Nutrition, 102, 115–122. PubMed ID: 25994567 doi:10.3945/ajcn.114.105833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, W., Kwak, H.-B., & Lawler, J.M. (2006). Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle. Antioxidants & Redox Signaling, 8, 517–528. PubMed ID: 16677096 doi:10.1089/ars.2006.8.517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, J.A., Al-Taan, O., Arshad, A., Morgan, B., Metcalfe, M.S., & Dennison, A. (2013). The multifaceted effects of omega-3 polyunsaturated Fatty acids on the hallmarks of cancer. Journal of Lipids, 2013, 261247. PubMed ID: 23762563 doi:10.1155/2013/261247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, M., Aoshiba, K., & Nagai, A. (2006). Oxidative stress increases Fas ligand expression in endothelial cells. Journal of Inflammation, 3, 11. PubMed ID: 16854215 doi:10.1186/1476-9255-3-11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tayyebi-Khosroshahi, H., Houshyar, J., Dehgan-Hesari, R., Alikhah, H., Vatankhah, A.-M., Safaeian, A.-R., & Zonouz, N.R. (2012). Effect of treatment with omega-3 fatty acids on C-reactive protein and tumor necrosis factor-alfa in hemodialysis patients. Saudi Journal of Kidney Diseases and Transplantation, 23, 500. PubMed ID: 22569435

    • Search Google Scholar
    • Export Citation
  • Vella, L., Caldow, M.K., Larsen, A.E., Tassoni, D., Della Gatta, P.A., Gran, P., . . . Cameron-Smith, D. (2012). Resistance exercise increases NF-κB activity in human skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302, R667–R673. PubMed ID: 22189669 doi:10.1152/ajpregu.00336.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., & Youle, R.J. (2009). The role of mitochondria in apoptosis. Annual Review of Genetics, 43, 95–118. PubMed ID: 19659442 doi:10.1146/annurev-genet-102108-134850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., Jemiolo, B., & Trappe, S. (2006). Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. Journal of Applied Physiology, 101, 1442–1450. PubMed ID: 16840578 doi:10.1152/japplphysiol.00438.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.H., Kang, S.G., Jung, U.Y., Jun, C.H., & Kim, H. (2009). Effects of omega-3 fatty acids on apoptosis of human gastric epithelial cells exposed to silica-immobilized glucose oxidase. Annals of the New York Academy of Sciences, 1171, 359–364. PubMed ID: 19723076 doi:10.1111/j.1749-6632.2009.04703.x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 29
Full Text Views 6 6 1
PDF Downloads 1 1 1