Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

To investigate the effects of resistance training and epicatechin supplementation on muscle strength, follistatin, and myostatin in older adults with sarcopenia, a total of 62 males with sarcopenia (68.63 ± 2.86 years) underwent a supervised 8-week randomized controlled trial. Participants were divided into resistance training (RT), epicatechin (EP), resistance training+epicatechin (RT+EP), and placebo (PL) in a double-blind method. A pretest and posttest measurement was conducted. One-way analysis of variance was used to analyze between-group differences. The significantly greatest increase was observed in follistatin, follistatin/myostatin ratio, leg press, and chest press in RT+EP comparing RT, EP, and PL groups, whereas myostatin decreased significantly only in RT+EP and RT groups. However, appendicular muscle mass index and timed up and go test were enhanced significantly in all experimental groups than the PL group (p ≤ .05). Consequently, by comparing the results between three experimental groups, the greatest improvement was detected in the RT+EP group. Therefore, using two interventions simultaneously seems to have a better impact on improving muscle growth factors and preventing the progression of sarcopenia.

Mafi, Biglari, Ghardashi Afousi, and Gaeini are with the Dept. of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Iran.

Address author correspondence to Farnoosh Mafi at farnoosh.mafi@ut.ac.ir.
  • Becker, C., Lord, S.R., Studenski, S.A., Warden, S.J., Fielding, R.A., Recknor, C.P., . . . Binder, E.F. (2015). Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial. The Lancet Diabetes & Endocrinology, 3(12), 948–957. PubMed ID: 26516121 doi:10.1016/S2213-8587(15)00298-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candow, D.G., Vogt, E., Johannsmeyer, S., Forbes, S.C., & Farthing, J.P. (2015). Strategic creatine supplementation and resistance training in healthy older adults. Applied Physiology, Nutrition, and Metabolism, 40(7), 689–694. PubMed ID: 25993883 doi:10.1139/apnm-2014-0498

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrusch, M.J., Chilibeck, P.D., Chad, K.E., Davison, K.S., & Burke, D.G. (2001). Creatine supplementation combined with resistance training in older men. Medicine & Science in Sports & Exercise, 33(12), 2111–2117. PubMed ID: 11740307 doi:10.1097/00005768-200112000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., . . . Rennie, M.J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB Journal, 19(3), 422–424. PubMed ID: 15596483 doi:10.1096/fj.04-2640fje

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diel, P., Schiffer, T., Geisler, S., Hertrampf, T., Mosler, S., Schulz, S., . . . Adler, M. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Molecular and Cellular Endocrinology, 330(1), 1–9. PubMed ID: 20801187 doi:10.1016/j.mce.2010.08.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dill, D.B., & Costill, D.L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247–248. PubMed ID: 4850854 doi:10.1152/jappl.1974.37.2.247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutierrez-Salmean, G., Ciaraldi, T.P., Nogueira, L., Barboza, J., Taub, P.R., Hogan, M.C., . . . Ceballos, G. (2014). Effects of (–)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry, 25(1), 91–94. PubMed ID: 24314870 doi:10.1016/j.jnutbio.2013.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., Brandt, C., Nielsen, A.R., Hojman, P., Whitham, M., Febbraio, M.A., . . . Plomgaard, P. (2011). Exercise induces a marked increase in plasma follistatin: Evidence that follistatin is a contraction-induced hepatokine. Endocrinology, 152(1), 164–171. PubMed ID: 21068158 doi:10.1210/en.2010-0868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, I., Baumgartner, R.N., Ross, R., Rosenberg, I.H., & Roubenoff, R. (2004). Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. American Journal of Epidemiology, 159(4), 413–421. doi:10.1093/aje/kwh058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalinkovich, A., & Livshits, G. (2015). Sarcopenia–The search for emerging biomarkers. Ageing Research Reviews, 22, 58–71. PubMed ID: 25962896 doi:10.1016/j.arr.2015.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., . . . Hiscock, N. (2009). Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of Physiology, 587(1), 211–217. PubMed ID: 19001042 doi:10.1113/jphysiol.2008.164483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshman, K.M., Bhasin, S., Corcoran, C., Collins-Racie, L.A., Tchistiakova, L., Forlow, S.B., . . . LaVallie, E.R. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Molecular and Cellular Endocrinology, 302(1), 26–32. PubMed ID: 19356623 doi:10.1016/j.mce.2008.12.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurentino, G.C., Ugrinowitsch, C., Roschel, H., Aoki, M.S., Soares, A.G., Neves, M., Jr., . . . Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Medicine & Science in Sports & Exercise, 44(3), 406–412. PubMed ID: 21900845 doi:10.1249/MSS.0b013e318233b4bc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-J. (2007). Quadrupling muscle mass in mice by targeting TGF-ß signaling pathways. PLoS ONE, 2(8), 789. doi:10.1371/journal.pone.0000789

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-J. (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 10(4), 183–194. PubMed ID: 21423813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lührmann, P., Herbert, B., Gaster, C., & Neuhäuser-Berthold, M. (1999). Validation of a self-administered 3-day estimated dietary record for use in the elderly. European Journal of Nutrition, 38(5), 235–240. doi:10.1007/s003940050066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltais, M.L., Ladouceur, J.P., & Dionne, I.J. (2016). The effect of resistance training and different sources of postexercise protein supplementation on muscle mass and physical capacity in sarcopenic elderly men. Journal of Strength & Conditioning Research, 30(6), 1680–1687. PubMed ID: 26562709 doi:10.1519/JSC.0000000000001255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, F., Scharhag-Rosenberger, F., Carlsohn, A., Cassel, M., Müller, S., & Scharhag, J. (2011). The intensity and effects of strength training in the elderly. Deutsches Ärzteblatt International, 108(21), 359. PubMed ID: 30311713

    • Search Google Scholar
    • Export Citation
  • McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., & Kambadur, R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. The Journal of Cell Biology, 162(6), 1135–1147. PubMed ID: 12963705 doi:10.1083/jcb.200207056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherron, A.C., Lawler, A.M., & Lee, S.-J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387(6628), 83–90. PubMed ID: 9139826 doi:10.1038/387083a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, J., Perera, P., Gordon, R., Jeong, Y., Blazek, A., Kim, D., . . . Zhao, Y. (2015). Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening. Bone, 78, 62–70. PubMed ID: 25937185 doi:10.1016/j.bone.2015.04.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narici, M.V., & Maffulli, N. (2010). Sarcopenia: Characteristics, mechanisms and functional significance. British Medical Bulletin, 95(1), 139–159. doi:10.1093/bmb/ldq008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parise, G., & Snijders, T. (2015). Myostatin inhibition for treatment of sarcopenia. The Lancet Diabetes & Endocrinology, 3(12), 917–918. PubMed ID: 26516120 doi:10.1016/S2213-8587(15)00324-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142–148. PubMed ID: 1991946 doi:10.1111/j.1532-5415.1991.tb01616.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, J., Vernus, B., Chelh, I., Cassar-Malek, I., Gabillard, J.-C., Sassi, A.H., . . . Bonnieu, A. (2014). Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cellular and Molecular Life Sciences, 71(22), 4361–4371. PubMed ID: 25080109 doi:10.1007/s00018-014-1689-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberg, I.H. (1997). Sarcopenia: Origins and clinical relevance. The Journal of Nutrition, 127(5), 990S–991S. doi:10.1093/jn/127.5.990S

  • Sandhu, J.S., Trivedi, S.S., & Shenoy, S. (2010). A correlation study between plasma myostatin and peak torque strength gains of bilateral knee extensors and flexors after resistance training in healthy Asian Indians. Journal of Musculoskeletal Research, 13(3), 109–117. doi:10.1142/S0218957710002569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, A.R., Lamas, L., Ugrinowitsch, C., Tricoli, V., Miyabara, E., Soares, A., & Aoki, M. (2015). Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression. International Journal of Sports Medicine, 36(9), 761–768. doi:10.1055/s-0035-1547219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, A.R., Neves, M.T., Jr., Gualano, B., Laurentino, G.C., Lancha, A.H., Jr., Ugrinowitsch, C., . . . Aoki, M.S. (2014). Blood flow restricted resistance training attenuates myostatin gene expression in a patient with inclusion body myositis. Biology of Sport, 31(2), 121–124. PubMed ID: 24899776 doi:10.5604/20831862.1097479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visser, M. (2009). Towards a definition of sarcopenia—results from epidemiologic studies. The Journal of Nutrition, Health & Aging, 13(8), 713–716. doi:10.1007/s12603-009-0202-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, R., & Ficker, J. (1999). Physical Activity Scale for the Elderly (PASE): The relationship with activity measured by a portable accelerometer. Journal of Sports Medicine and Physical Fitness, 39(4), 336. PubMed ID: 10726435

    • Search Google Scholar
    • Export Citation
  • Willoughby, D.S. (2004). Effects of heavy resistance training on myostatin mRNA and protein expression. Medicine & Science in Sports & Exercise, 36(4), 574–582. PubMed ID: 15064583 doi:10.1249/01.MSS.0000121952.71533.EA

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winbanks, C.E., Weeks, K.L., Thomson, R.E., Sepulveda, P.V., Beyer, C., Qian, H., . . . Febbraio, M.A. (2012). Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. The Journal of Cell Biology, 197(7), 997–1008. doi:10.1083/jcb.201109091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, J. (2017). Sarcopenia. Clinics in Geriatric Medicine, 33(3), 305–314. PubMed ID: 28689564 doi:10.1016/j.cger.2017.02.003

  • Yu, P.L., Pu, H.F., Chen, S.Y., Wang, S.W., & Wang, P.S. (2010). Effects of catechin, epicatechin and epigallocatechin gallate on testosterone production in rat leydig cells. Journal of Cellular Biochemistry, 110(2), 333–342. PubMed ID: 20432242 doi:10.1002/jcb.22541

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 374 63
Full Text Views 13 13 3
PDF Downloads 6 6 2