Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $189.00

The aim of this study was to analyze the association between muscle quality index (MQI) and phase angle (PhA) after a program of progressive resistance training (RT) in older women. Sixty-six older women with previous RT experience (68.8 ± 4.6 years, 156.6 ± 5.3 cm, 66.0 ± 13.0 kg, and 26.7 ± 4.6 kg/m2) underwent 12 weeks of RT (3 ×/week, eight exercises, and 10–15 repetition maximum). Anthropometry, muscular strength (one-repetition maximum tests), and body composition (dual-energy X-ray absorptiometry and spectral bioimpedance) were measured pre- and posttraining. There were observed significant increases for PhA, MQI, muscular strength, muscle mass, and reactance, whereas no significant changes in body fat and resistance were found. A significant correlation was observed between the RT-induced relative changes in PhA and MQI (r = .620). We conclude that improvements in MQI induced by RT are associated with increases in PhA. Therefore, PhA may be a valid tool to track changes in MQI after 12 weeks of RT in older women.

Nunes, Ribeiro, dos Santos, Cunha, Nascimento, Tomeleri, Nabuco, Antunes, L.T. Cyrino, and E.S. Cyrino are with the Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil. Ribeiro is also with the Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil. Silva is with the Exercise and Health Laboratory, Faculty of Human Kinetics, Universidade de Lisboa, Lisbon, Portugal. Schoenfeld is with the Exercise Science Dept., CUNY Lehman College, Bronx, NY. Nascimento is also with the Paraná State University—UNESPAR, Paranavaí, Brazil.

Address author correspondence to João Pedro Nunes at joaonunes.jpn@hotmail.com.
Journal of Aging and Physical Activity
Article Sections
References
  • American College of Sports Medicine. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise 41(3) 687708. doi:10.1249/MSS.0b013e3181915670

    • Search Google Scholar
    • Export Citation
  • Barbat-ArtigasS.RollandY.ZamboniM. & Aubertin-LeheudreM. (2012). How to assess functional status: A new muscle quality index. The Journal of Nutrition Health & Aging 16(1) 6777. doi:10.1007/s12603-012-0004-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BasileC.Della-MorteD.CacciatoreF.GargiuloG.GaliziaG.RoselliM.AbeteP. (2014). Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Experimental Gerontology 584346. PubMed ID: 25034911 doi:10.1016/j.exger.2014.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeaJ.W.CusslerE.C.GoingS.B.BlewR.M.LauveL. & LohmanT.G. (2011). Resistance training predicts six-year body composition change in post-menopausal women. Medicine & Science in Sports & Exercise 42(7) 12861295. doi:10.1249/MSS.0b013e3181ca8115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeberashviliI.AzarA.SinuaniI.ShapiroG.FeldmanL.StavK.AverbukhZ. (2014). Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. European Journal of Clinical Nutrition 68(6) 683689. PubMed ID: 24736681 doi:10.1038/ejcn.2014.67

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CurcioF.FerroG.BasileC.LiguoriI.ParrellaP.PirozziF.AbeteP. (2016). Biomarkers in sarcopenia: A multifactorial approach. Experimental Gerontology 8518. PubMed ID: 27633530 doi:10.1016/j.exger.2016.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos SantosL.CyrinoE.S.AntunesM.SantosD.A. & SardinhaL.B. (2016). Changes in phase angle and body composition induced by resistance training in older women. European Journal of Clinical Nutrition 70(12) 14081413. PubMed ID: 27406159 doi:10.1038/ejcn.2016.124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FragalaM.S.KennyA.M. & KuchelG.A. (2015). Muscle quality in aging: A multi-dimensional approach to muscle functioning with applications for treatment. Sports Medicine 45(5) 641658. PubMed ID: 25655372 doi:10.1007/s40279-015-0305-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KemmlerW.Von StengelS.WeineckJ.LauberD.KalenderW. & EngelkeK. (2005). Exercise effects on menopausal risk factors of early postmenopausal women: 3-yr Erlangen fitness osteoporosis prevention study results. Medicine & Science in Sports & Exercise 37(2) 194203. doi:10.1249/01.MSS.0000152678.20239.76

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KimJ.HeshkaS.GallagherD.KotlerD.P.MayerL.AlbuJ.HeymsfieldS.B. (2004). Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults. Journal of Applied Physiology 97(2) 655660. PubMed ID: 26806874 doi:10.1152/japplphysiol.00260.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ManiniT.M. & ClarkB.C. (2012). Dynapenia and aging: An update. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 67(1) 2840. PubMed ID: 21444359 doi:10.1093/gerona/glr010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregorR.A.Cameron-SmithD. & PoppittS.D. (2014). It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longevity & Healthspan 3(1) 9. PubMed ID: 25520782 doi:10.1186/2046-2395-3-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MicheliM.L.PaganiL.MarellaM.GulisanoM.PiccoliA.AngeliniF.GattererH. (2013). Bioimpedance and impedance vector patterns as predictors of male elite soccer players. International Journal of Sports Physiology and Performance 9(3) 532539. doi:10.1123/ijspp.2013-0119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MilanovicZ.PantelicS.TrajkovicN.SporisG.KosticR. & JamesN. (2013). Age-related decrease in physical activity and functional fitness among elderly men and women. Clinical Interventions in Aging 8549556. PubMed ID: 23723694 doi:10.2147/CIA.S44112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NascimentoM.A.JanuárioR.S.GerageA.M.MayhewJ.L.Cheche PinaF.L. & CyrinoE.S. (2013). Familiarization and reliability of one repetition maximum strength testing in older women. Journal of Strength and Conditioning Research 27(6) 16361642. doi:10.1519/JSC.0b013e3182717318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NormanK.StobäusN.PirlichM. & Bosy-WestphalA. (2012). Bioelectrical phase angle and impedance vector analysis: Clinical relevance and applicability of impedance parameters. Clinical Nutrition 31(6) 854861. PubMed ID: 22698802 doi:10.1016/j.clnu.2012.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NormanK.WirthR.NeubauerM.EckardtR. & StobäusN. (2015). The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. Journal of the American Medical Directors Association 16(2) 173.e17173.e22. doi:10.1016/j.jamda.2014.10.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RibeiroA.S.AvelarA.Dos SantosL.SilvaA.GobboL.A.SchoenfeldB.J.CyrinoE.S. (2017). Hypertrophy-type resistance training improves phase angle in young adult men and women. International Journal of Sports Medicine 38(1) 350340.

    • Search Google Scholar
    • Export Citation
  • RibeiroA.S.AvelarA.SchoenfeldB.J.FleckS.J.SouzaM.F.PadilhaC.S. & CyrinoE.S. (2015). Analysis of the training load during a hypertrophy-type resistance training programme in men and women. European Journal of Sport Science 15(4) 256264. PubMed ID: 25068761 doi:10.1080/17461391.2014.940559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RibeiroA.S.NascimentoM.A.SchoenfeldB.J.NunesJ.P.AguiarA.F.CavalcanteE.F.CyrinoE.S. (2018). Effects of single-set resistance training with different frequencies on a cellular health indicator in older women. Journal of Aging and Physical Activity 26(4) 537543. PubMed ID: 29182426 doi:10.1123/japa.2017-0258

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RibeiroA.S.SchoenfeldB.J.AguiarA.F.NunesJ.P.CavalcanteE.F.CadoreE.L. & CyrinoE.S. (2018). Effects of different resistance training systems on muscular strength and hypertrophy in resistance-trained older women. Journal of Strength and Conditioning Research 32(2) 545553. PubMed ID: 29120984

    • Search Google Scholar
    • Export Citation
  • RibeiroA.S.SchoenfeldB.J.SouzaM.F.TomeleriC.M.VenturiniD.BarbosaD.S. & CyrinoE.S. (2016). Traditional and pyramidal resistance training systems improve muscle quality and metabolic biomarkers in older women: A randomized crossover study. Experimental Gerontology 79815. PubMed ID: 26972635 doi:10.1016/j.exger.2016.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SardinhaL.B.LohmanT.G.TeixeiraP.GuedesD.P. & GoingS.B. (1998). Comparison of air displacement plethysmography with dual-energy X-ray absorptiometry and 3 field methods for estimating body composition in middle-aged men. American Journal of Clinical Nutrition 68(4) 786793. PubMed ID: 9771855 doi:10.1093/ajcn/68.4.786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchoenfeldB.J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research 24(10) 28572872. PubMed ID: 20847704 doi:10.1519/JSC.0b013e3181e840f3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchoenfeldB.J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Medicine 43(3) 179194. PubMed ID: 23338987 doi:10.1007/s40279-013-0017-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SouzaM.F.TomeleriC.M.RibeiroA.S.SchoenfeldB.J.SilvaA.M.SardinhaL.B. & CyrinoE.S. (2016). Effect of resistance training on phase angle in older women: A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports 27(11) 13081316. PubMed ID: 27541287 doi:10.1111/sms.12745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StobäusN.PirlichM.ValentiniL.SchulzkeJ.D. & NormanK. (2012). Determinants of bioelectrical phase angle in disease. British Journal of Nutrition 107(8) 12171220. doi:10.1017/S0007114511004028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TomeleriC.M.CavaglieriC.R.de SouzaM.F.CavalcanteE.F.AntunesM.NabbucoH.C..CyrinoE.S. (2018). Phase angle is related with inflammatory and oxidative stress biomarkers in older women. Experimental Gerontology 1021218. PubMed ID: 29197561 doi:10.1016/j.exger.2017.11.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TomeleriC.M.CavalcanteE.F.AntunesM.NabucoH.C.G.SouzaM.F.TeixeiraD.C.CyrinoE.S. (2017). Phase angle is moderately associated with muscle quality and functional capacity, independent of age and body composition in older women. Journal of Geriatric Physical Therapy. Advance online publication. doi:10.1519/JPT.0000000000000161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WestcottW.L. (2012). Resistance training is medicine: Effects of strength training on health. Current Sports Medicine Reports 11(4) 209216. PubMed ID: 22777332 doi:10.1249/JSR.0b013e31825dabb8

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 176 175 54
Full Text Views 2 2 1
PDF Downloads 3 3 2
Altmetric Badge
PubMed
Google Scholar
Cited By