Mobile Health Interventions for Physical Activity, Sedentary Behavior, and Sleep in Adults Aged 50 Years and Older: A Systematic Literature Review

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $189.00

We provide a systematic review of interventions utilizing mobile technology to alter physical activity, sedentary behavior, and sleep among adults aged 50 years and older. A systematic search identified 52 relevant articles (randomized control trial [RCT], quasi-experimental, pre/post single-group design). Of 50 trials assessing physical activity, 17 out of 29 RCTs and 13 out of 21 trials assessed for pre/post changes only supported the effectiveness of mobile interventions to improve physical activity, and 9 studies (five out of 10 RCTs and all four pre/post studies) out of 14 reduced sedentary behavior. Only two of five interventions improved sleep (one out of two RCTs and one out of three pre/post studies). Text messaging was the most frequently used intervention (60% of all studies) but was usually used in combination with other components (79% of hybrid interventions included SMS, plus either web or app components). Although more high-quality RCTs are needed, there is evidence supporting the effectiveness of mHealth approaches in those aged 50 years and older.

Elavsky is with the Faculty of Social Studies, Institute for Research on Children, Youth, and Family, Masaryk University, Brno, Czech Republic. Knapova, Klocek, and Smahel are with Masaryk University, Brno, Czech Republic.

Address author correspondence to Steriani Elavsky at elavsky@fss.muni.cz.
Journal of Aging and Physical Activity
Article Sections
References
  • AmmenwerthE.WoessS.BaumgartnerC.FetzB.Van Der HeidtA.KastnerP. . . . PoelzlG. (2015). Evaluation of an integrated telemonitoring surveillance system in patients with coronary heart disease. Methods of Information in Medicine 54(5) 388397. doi:10.3414/ME15-02-0002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antoine ParkerC. & EllisR. (2016). Effect of electronic messaging on physical activity participation among older adults. Journal of Aging Research 20166171028. doi:10.1155/2016/6171028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AntypasK. & WangbergS.C. (2014). An Internet- and mobile-based tailored intervention to enhance maintenance of physical activity after cardiac rehabilitation: Short-term results of a randomized controlled trial. Journal of Medical Internet Research 16(3) 77. doi:10.2196/jmir.3132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AremH.MooreS.C.PatelA.HartgeP.Berrington de GonzalezA.VisvanathanK. . . . MatthewsC.E. (2015). Leisure time physical activity and mortality. JAMA Internal Medicine 175(6) 959. PubMed ID: 25844730 doi:10.1001/jamainternmed.2015.0533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArsandE.TataraN.OstengenG. & HartvigsenG. (2010). Mobile phone-based self-management tools for type 2 diabetes: The few touch application. Journal of Diabetes Science and Technology 4(2) 328336. PubMed ID: 20307393 doi:10.1177/193229681000400213

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArthurC. (2014). Wearables: One-third of consumers abandoning devices. The Guardian. Retrieved from https://www.theguardian.com/technology/2014/apr/01/wearables-consumers-abandoning-devices-galaxy-gear

    • Search Google Scholar
    • Export Citation
  • BallK.HunterR.F.MapleJ.-L.MoodieM.SalmonJ.OngK.-L. . . . CrawfordD. (2017). Can an incentive-based intervention increase physical activity and reduce sitting among adults? The ACHIEVE (Active Choices IncEntiVE) feasibility study. International Journal of Behavioral Nutrition and Physical Activity 14(1) 35. PubMed ID: 28320409 doi:10.1186/s12966-017-0490-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barberan-GarciaA.VogiatzisI.SolbergH.S.VilaróJ.RodríguezD.A.GaråsenH.M. . . . NEXES Consortium. (2014). Effects and barriers to deployment of telehealth wellness programs for chronic patients across 3 European countries. Respiratory Medicine 108(4) 628637. PubMed ID: 24451438 doi:10.1016/j.rmed.2013.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeishuizenC.R.StephanB.C.van GoolW.A.BrayneC.PetersR.J.AndrieuS. . . . RichardE. (2016). Web-based interventions targeting cardiovascular risk factors in middle-aged and older people: A systematic review and meta-analysis. Journal of Medical Internet Research 18(3) e55. PubMed ID: 26968879 doi:10.2196/jmir.5218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlockG.AzarK.M.J.RomanelliR.J.BlockT.J.HopkinsD.CarpenterH.A. . . . BlockC.H. (2015). Diabetes prevention and weight loss with a fully automated behavioral intervention by email, Web, and mobile phone: A randomized controlled trial among persons with prediabetes. Journal of Medical Internet Research 17(10) e240. PubMed ID: 26499966 doi:10.2196/jmir.4897

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BumanM.P.EpsteinD.R.GutierrezM.HerbC.HollingsheadK.HubertyJ.L. . . . BaldwinC.M. (2016). BeWell24: development and process evaluation of a smartphone “app” to improve sleep, sedentary, and active behaviors in US Veterans with increased metabolic risk. Translational Behavioral Medicine 6(3) 438448. PubMed ID: 27528532 doi:10.1007/s13142-015-0359-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BumanM.P.WinklerE.A.H.KurkaJ.M.HeklerE.B.BaldwinC.M.OwenN. . . . GardinerP.A. (2014). Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. American Journal of Epidemiology 179(3) 323334. PubMed ID: 24318278 doi:10.1093/aje/kwt292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangiziM. & KavehM.H. (2017). Effectiveness of the mHealth technology in improvement of healthy behaviors in an elderly population—A systematic review. mHealth 351. PubMed ID: 29430455 doi:10.21037/mhealth.2017.08.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenH.C.ChuangT.Y.LinP.C.LinY.K. & ChuangY.H. (2017). Effects of messages delivered by mobile phone on increasing compliance with shoulder exercises among patients with a frozen shoulder. Journal of Nursing Scholarship 49(4) 429437. PubMed ID: 28632975 doi:10.1111/jnu.12308

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChiariniG.RayP.AkterS.MasellaC. & GanzA. (2013). mHealth technologies for chronic diseases and elders: A systematic review. IEEE Journal on Selected Areas in Communications 31(9) 618. doi:10.1109/JSAC.2013.SUP.0513001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChowC.K.RedfernJ.HillisG.S.ThakkarJ.SantoK.HackettM.L. . . . ThiagalingamA. (2015). Effect of lifestyle-focused text messaging on risk factor modification in patients with coronary heart disease. JAMA 314(12) 1255. PubMed ID: 26393848 doi:10.1001/jama.2015.10945

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CohenA.PerozichA.RajanR.PerskyS.ParisiJ.BowieJ. . . . CheskinL.J. (2017). Framed, interactive theory-driven texting: Effects of message framing on health behavior change for weight loss. Family & Community Health 40(1) 4351. PubMed ID: 27870754 doi:10.1097/FCH.0000000000000128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollinsL.M.MurphyS.A. & StrecherV. (2007). The Multiphase Optimization Strategy (MOST) and the Sequential Multiple Assignment Randomized Trial (SMART): New methods for more potent eHealth interventions. American Journal of Preventive Medicine 32(5 Suppl.) S112118. doi:10.1016/j.amepre.2007.01.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollinsL.M.Nahum-ShaniI. & AlmirallD. (2014). Optimization of behavioral dynamic treatment regimens based on the Sequential, Multiple Assignment, Randomized Trial (SMART). Clinical Trials 11(4) 426434. PubMed ID: 24902922 doi:10.1177/1740774514536795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DemeyerH.LouvarisZ.FreiA.RabinovichR.A.de JongC.Gimeno-SantosE. . . . Mr Papp PROactive study group and the PROactive consortium. (2017). Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: A multicentre randomised controlled trial. Thorax 72(5) 415423. PubMed ID: 28137918 doi:10.1136/thoraxjnl-2016-209026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DonaldsonE.L.FallowsS. & MorrisM. (2014). A text message based weight management intervention for overweight adults. Journal of Human Nutrition and Dietetics 27(Suppl. 2) 9097. doi:10.1111/jhn.12096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DrewnowskiA. & EvansW.J. (2001). Nutrition, physical activity, and quality of life in older adults: Summary. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 56(Spec. No. 2) 8994. doi:10.1093/gerona/56.suppl_2.89

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EkelundU.Steene-JohannessenJ.BrownW.J.FagerlandM.W.OwenN.PowellK.E. . . . Lancet Sedentary Behaviour Working Group. (2016). Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet 388(10051) 13021310. doi:10.1016/S0140-6736(16)30370-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eurostat. (2016). Internet access and use statistics—Households and individuals—Statistics Explained. Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Internet_access_and_use_statistics_-_households_and_individuals

    • Search Google Scholar
    • Export Citation
  • FinkelsteinJ.BedraM.LiX.WoodJ. & OuyangP. (2015). Mobile app to reduce inactivity in sedentary overweight women. Studies in Health Technology and Informatics 2168992. PubMed ID: 26262016 doi:10.3233/978-1-61499-564-7-89

    • Search Google Scholar
    • Export Citation
  • FjeldsoeB.S.GoodeA.D.PhongsavanP.BaumanA.MaherG.WinklerE. & EakinE.G. (2016). Evaluating the maintenance of lifestyle changes in a randomized controlled trial of the ‘Get Healthy, ****Stay Healthy’ program. JMIR mHealth and uHealth 4(2) e42. doi:10.2196/mhealth.5280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FongS.S.NgS.S.ChengY.T.ZhangJ.ChungL.M.ChowG.C. . . . MacfarlaneI.M. (2016). Comparison between smartphone pedometer applications and traditional pedometers for improving physical activity and body mass index in community-dwelling older adults. Journal of Physical Therapy Science 28(5) 16511656. doi:10.1589/jpts.28.1651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FormanD.E.LaFondK.PanchT.AllsupK.ManningK. & SattelmairJ. (2014). Utility and efficacy of a smartphone application to enhance the learning and behavior goals of traditional cardiac rehabilitation: A feasibility study. Journal of Cardiopulmonary Rehabilitation and Prevention 34(5) 327334. PubMed ID: 24866355 doi:10.1097/HCR.0000000000000058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrederixI.HansenD.ConinxK.VandervoortP.VandijckD.HensN. . . . DendaleP. (2015). Medium-term effectiveness of a comprehensive Internet-based and patient-specific telerehabilitation program with text messaging support for cardiac patients: Randomized controlled trial. Journal of Medical Internet Research 17(7) e185. PubMed ID: 26206311 doi:10.2196/jmir.4799

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FriedmanE.M. (2016). Self-reported sleep problems prospectively increase risk of disability: Findings from the survey of midlife development in the United States. Journal of the American Geriatrics Society 64(11) 22352241. PubMed ID: 27626617 doi:10.1111/jgs.14347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GellN.M.GroverK.W.HumbleM.SextonM. & DittusK. (2017). Efficacy, feasibility, and acceptability of a novel technology-based intervention to support physical activity in cancer survivors. Supportive Care in Cancer 25(4) 12911300. PubMed ID: 27957621 doi:10.1007/s00520-016-3523-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GellN.M.RosenbergD.E.DemirisG.LaCroixA.Z. & PatelK.V. (2015). Patterns of technology use among older adults with and without disabilities. The Gerontologist 55(3) 412421. PubMed ID: 24379019 doi:10.1093/geront/gnt166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeraedtsH.ZijlstraA.BulstraS.K.StevensM. & ZijlstraW. (2013). Effects of remote feedback in home-based physical activity interventions for older adults: A systematic review. Patient Education and Counseling 91(1) 1424. PubMed ID: 23194823 doi:10.1016/j.pec.2012.10.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrossmanE.S. (2017). Enduring sleep complaints predict health problems: A six-year follow-up of the survey of health and retirement in Europe. Aging & Mental Health 21(11) 11551163. PubMed ID: 27484858 doi:10.1080/13607863.2016.1209735

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaegerM.BockO. & ZijlstraW. (2017). A smartphone based approach to enhance older persons’ mobility in daily life. Gerontechnology 16(2) 109114. doi:10.4017/gt.2017.16.2.006.00

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HelbostadJ.L.VereijkenB.BeckerC.ToddC.TaraldsenK.PijnappelsM. . . . MelloneS. (2017). Mobile health applications to promote active and healthy ageing. Sensors 17(3) E622. doi:10.3390/s17030622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HolmenH.TorbjørnsenA.WahlA.K.JenumA.K.SmåstuenM.C.ÅrsandE. & RibuL. (2014). A mobile health intervention for self-management and lifestyle change for persons with type 2 diabetes, part 2: One-year results from the Norwegian randomized controlled trial renewing health. JMIR mHealth and uHealth 2(4) e57. PubMed ID: 25499872 doi:10.2196/mhealth.3882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IsettaV.TorresM.GonzálezK.RuizC.DalmasesM.EmbidC. . . . MontserratJ.M. (2017). A new mHealth application to support treatment of sleep apnoea patients. Journal of Telemedicine and Telecare 23(1) 1418. PubMed ID: 26672606 doi:10.1177/1357633X15621848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JúdiceP.B.HamiltonM.T.SardinhaL.B. & SilvaA.M. (2015). Randomized controlled pilot of an intervention to reduce and break-up overweight/obese adults’ overall sitting-time. Trials 16(1) 490. doi:10.1186/s13063-015-1015-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KampmeijerR.PavlovaM.TamborM.GolinowskaS. & GrootW. (2016). The use of e-health and m-health tools in health promotion and primary prevention among older adults: A systematic literature review. BMC Health Services Research 16(S5) 290. doi:10.1186/s12913-016-1522-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KangM. & RoweD.A. (2015). Issues and challenges in sedentary behavior measurement. Measurement in Physical Education and Exercise Science 19(3) 105115. doi:10.1080/1091367X.2015.1055566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KatzmarzykP.T. & LeeI.-M. (2012). Sedentary behaviour and life expectancy in the USA: A cause-deleted life table analysis. BMJ Open 2(4) e000828. PubMed ID: 22777603 doi:10.1136/bmjopen-2012-000828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KimB.Y. & GlanzK. (2013). Text messaging to motivate walking in older African Americans: A randomized controlled trial. American Journal of Preventive Medicine 44(1) 7175. doi:10.1016/j.amepre.2012.09.050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KimB.Y. & LeeJ. (2017). Smart devices for older adults managing chronic disease: A scoping review. JMIR mHealth and uHealth 5(5) e69. PubMed ID: 28536089 doi:10.2196/mhealth.7141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingA.C.AhnD.K.OliveiraB.M.AtienzaA.A.CastroC.M. & GardnerC.D. (2008). Promoting physical activity through hand-held computer technology. American Journal of Preventive Medicine 34(2) 138142. PubMed ID: 18201644 doi:10.1016/j.amepre.2007.09.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingA.C.HeklerE.B.GriecoL.A.WinterS.J.SheatsJ.L.BumanM.P. . . . CirimeleJ. (2013). Harnessing different motivational frames via mobile phones to promote daily physical activity and reduce sedentary behavior in aging adults. PLoS ONE 8(4) e62613. PubMed ID: 23638127 doi:10.1371/journal.pone.0062613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingA.C.HeklerE.B.GriecoL.A.WinterS.J.SheatsJ.L.BumanM.P. . . . CirimeleJ. (2016). Effects of three motivationally targeted mobile device applications on initial physical activity and sedentary behavior change in midlife and older adults: A randomized trial. PLoS ONE 11(6) e0156370. PubMed ID: 27352250 doi:10.1371/journal.pone.0156370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KnightE.StuckeyM.I. & PetrellaR.J. (2014). Health promotion through primary care: Enhancing self-management with activity prescription and mHealth. The Physician and Sportsmedicine 42(3) 9099. doi:10.3810/psm.2014.09.2080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KnowlesL.M.SkeathP.JiaM.NajafiB.ThayerJ. & SternbergE.M. (2016). New and future directions in integrative medicine research methods with a focus on aging populations: A review. Gerontology 62(4) 467476. PubMed ID: 26545038 doi:10.1159/000441494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KosterA.PenninxB.W.NewmanA.B.VisserM.van GoolC.H.HarrisT.B. . . . KritchevskyS.B. (2007). Lifestyle factors and incident mobility limitation in obese and non-obese older adults. Obesity 15(12) 31223132. doi:10.1038/oby.2007.372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KruseC.S.MileskiM. & MorenoJ. (2017). Mobile health solutions for the aging population: A systematic narrative analysis. Journal of Telemedicine and Telecare 23(4) 439451. doi:10.1177/1357633X16649790

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KumarS.NilsenW.J.AbernethyA.AtienzaA.PatrickK.PavelM. . . . SwendemanD. (2013). Mobile health technology evaluation. American Journal of Preventive Medicine 45(2) 228236. PubMed ID: 23867031 doi:10.1016/j.amepre.2013.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LyonsE.J.SwartzM.C.LewisZ.H.MartinezE. & JenningsK. (2017). Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: A randomized controlled pilot trial. JMIR mHealth and uHealth 5(3) e28. doi:10.2196/mhealth.6967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaddisonR.PfaeffliL.WhittakerR.StewartR.KerrA.JiangY. . . . RawstornJ. (2015). A mobile phone intervention increases physical activity in people with cardiovascular disease: Results from the HEART randomized controlled trial. European Journal of Preventive Cardiology 22(6) 701709. PubMed ID: 24817694 doi:10.1177/2047487314535076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MartinS.S.FeldmanD.I.BlumenthalR.S.JonesS.R.PostW.S.McKibbenR.A. . . . BlahaM.J. (2015). mActive: A randomized clinical trial of an automated mHealth intervention for physical activity promotion. Journal of the American Heart Association 4(11) e002239. PubMed ID: 26553211 doi:10.1161/JAHA.115.002239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoyP.LeggettS.BhuiyanA.BrownD.FryeP. & WilliamsB. (2017). Text messaging: An intervention to increase physical activity among African American participants in a faith-based, competitive weight loss program. International Journal of Environmental Research and Public Health 14(4) 326. doi:10.3390/ijerph14040326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MekaryR.A.WillettW.C.HuF.B. & DingE.L. (2009). Isotemporal substitution paradigm for physical activity epidemiology and weight change. American Journal of Epidemiology 170(4) 519527. PubMed ID: 19584129 doi:10.1093/aje/kwp163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MendelsonM.VivodtzevI.TamisierR.LaplaudD.Dias-DomingosS.BaguetJ.-P. . . . PépinJ.-L. (2014). CPAP treatment supported by telemedicine does not improve blood pressure in high cardiovascular risk OSA patients: A randomized, controlled trial. Sleep 37(11) 18631870. PubMed ID: 25364081 doi:10.5665/sleep.4186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MichieS.AshfordS.SniehottaF.F.DombrowskiS.U.BishopA. & FrenchD.P. (2011). A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO-RE taxonomy. Psychology & Health 26(11) 14791498. PubMed ID: 21678185 doi:10.1080/08870446.2010.540664

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MichieS.van StralenM.M. & WestR. (2011). The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Science 642. PubMed ID: 21513547 doi:10.1186/1748-5908-6-42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MichieS.YardleyL.WestR.PatrickK. & GreavesF. (2017). Developing and evaluating digital interventions to promote behavior change in health and health care: Recommendations resulting from an international workshop. Journal of Medical Internet Research 19(6) e232. PubMed ID: 28663162 doi:10.2196/jmir.7126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoherD.LiberatiA.TetzlaffJ.AltmanD.G. & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine 6(7) e1000097. PubMed ID: 19621072 doi:10.1371/journal.pmed.1000097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MohrD.C.CheungK.SchuellerS.M.Hendricks BrownC. & DuanN. (2013). Continuous evaluation of evolving behavioral intervention technologies. American Journal of Preventive Medicine 45(4) 517523. PubMed ID: 24050429 doi:10.1016/j.amepre.2013.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MollerA.C.MerchantG.ConroyD.E.WestR.HeklerE.KuglerK.C. & MichieS. (2017). Applying and advancing behavior change theories and techniques in the context of a digital health revolution: Proposals for more effectively realizing untapped potential. Journal of Behavioral Medicine 40(1) 8598. PubMed ID: 28058516 doi:10.1007/s10865-016-9818-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MooreS.C.PatelA.V.MatthewsC.E.Berrington de GonzalezA.ParkY.KatkiH. . . . LeeI.M. (2012). Leisure time physical activity of moderate to vigorous intensity and mortality: A large pooled cohort analysis. PLoS Medicine 9(11) e1001335. PubMed ID: 23139642 doi:10.1371/journal.pmed.1001335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuellmannS.ForbergerS.MöllersT.BröringE.ZeebH. & PischkeC.R. (2018). Effectiveness of eHealth interventions for the promotion of physical activity in older adults: A systematic review. Preventive Medicine 10893110. PubMed ID: 29289643 doi:10.1016/j.ypmed.2017.12.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MüllerA.M.KhooS. & MorrisT. (2016). Text messaging for exercise promotion in older adults from an upper-middle-income country: Randomized controlled trial. Journal of Medical Internet Research 18(1) e5. doi:10.2196/jmir5235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muntaner-MasA.Vidal-ContiJ.BorrasP.A.OrtegaF.B. & PalouP. (2017). Effects of a Whatsapp-delivered physical activity intervention to enhance health-related physical fitness components and cardiovascular disease risk factors in older adults. The Journal of Sports Medicine and Physical Fitness 57(1–2) 91102. PubMed ID: 28604654

    • Search Google Scholar
    • Export Citation
  • MurrayE.HeklerE.B.AnderssonG.CollinsL.M.DohertyA.HollisC. . . . WyattJ.C. (2016). Evaluating digital health interventions: Key questions and approaches. American Journal of Preventive Medicine 51(5) 843851. PubMed ID: 27745684 doi:10.1016/j.amepre.2016.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nahum-ShaniI.SmithS.N.SpringB.J.CollinsL.M.WitkiewitzK.TewariA. & MurphyS.A. (2018). Just-in-Time Adaptive Interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Annals of Behavioral Medicine 52(6) 446462. doi:10.1007/s12160-016-9830-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OgilvieD.FayterD.PetticrewM.SowdenA.ThomasS.WhiteheadM. & WorthyG. (2008). The harvest plot: A method for synthesising evidence about the differential effects of interventions. BMC Medical Research Methodology 8(1) 8. doi:10.1186/1471-2288-8-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PeelN.M.McClureR.J. & BartlettH.P. (2005). Behavioral determinants of healthy aging. American Journal of Preventive Medicine 28(3) 298304. PubMed ID: 15766620 doi:10.1016/j.amepre.2004.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PellegriniC.A.HoffmanS.A.DalyE.R.MurilloM.IakovlevG. & SpringB. (2015). Acceptability of smartphone technology to interrupt sedentary time in adults with diabetes. Translational Behavioral Medicine 5(3) 307314. PubMed ID: 26327936 doi:10.1007/s13142-015-0314-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PEW Research Center. (2014). Older adults and technology use. Retrieved from http://www.pewinternet.org/2014/04/03/older-adults-and-technology-use/%0A

    • Export Citation
  • PEW Research Center. (2016). Smartphone ownership and Internet usage continues to climb in emerging economies Pew Research Center. Retrieved from http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/

    • Export Citation
  • PEW Research Center. (2017). Mobile fact sheet. Retrieved from http://www.pewinternet.org/fact-sheet/mobile/

    • Export Citation
  • Pfaeffli DaleL.WhittakerR.JiangY.StewartR.RollestonA. & MaddisonR. (2015). Text message and Internet support for coronary heart disease self-management: Results from the Text4Heart randomized controlled trial. Journal of Medical Internet Research 17(10) e237. PubMed ID: 26490012 doi:10.2196/jmir.4944

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotheram-BorusM.J.TomlinsonM.GwegweM.ComuladaW.S.KaufmanN. & KeimM. (2012). Diabetes buddies: Peer support through a mobile phone buddy system. The Diabetes Educator 38(3) 357365. PubMed ID: 22546740 doi:10.1177/0145721712444617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShettyA.S.ChamukuttanS.NandithaA.RajR.K. & RamachandranA. (2011). Reinforcement of adherence to prescription recommendations in Asian Indian diabetes patients using short message service (SMS)—A pilot study. Journal of Association of Physicians of India 59(11) 711714. Retrieved from http://www.japi.org/november2011/04_oa.pdf

    • Search Google Scholar
    • Export Citation
  • SilveiraP.van de LangenbergR.van het ReveE.DanielF.CasatiF. & de BruinE.D. (2013). Tablet-based strength-balance training to motivate and improve adherence to exercise in independently living older people: A phase II preclinical exploratory trial. Journal of Medical Internet Research 15(8) e159. PubMed ID: 23939401 doi:10.2196/jmir.2579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StuckeyM.Russell-MindaE.ReadE.MunozC.ShoemakerK.KleinstiverP. & PetrellaR. (2011). Diabetes and Technology for Increased Activity (DaTA) study: Results of a remote monitoring intervention for prevention of metabolic syndrome. Journal of Diabetes Science and Technology 5(4) 928935. PubMed ID: 21880236 doi:10.1177/193229681100500416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TabakM.Brusse-KeizerM.van der ValkP.HermensH. & Vollenbroek-HuttenM. (2014). A telehealth program for self-management of COPD exacerbations and promotion of an active lifestyle: A pilot randomized controlled trial. International Journal of Chronic Obstructive Pulmonary Disease 9935944. PubMed ID: 25246781 doi:10.2147/COPD.S60179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TabakM.op den AkkerH. & HermensH. (2014). Motivational cues as real-time feedback for changing daily activity behavior of patients with COPD. Patient Education and Counseling 94(3) 372378. PubMed ID: 24332934 doi:10.1016/j.pec.2013.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TabakM.Vollenbroek-HuttenM.M.van der ValkP.D.van der PalenJ. & HermensH.J. (2014). A telerehabilitation intervention for patients with chronic obstructive pulmonary disease: A randomized controlled pilot trial. Clinical Rehabilitation 28(6) 582591. PubMed ID: 24293120 doi:10.1177/0269215513512495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TaraldsenK.ChastinS.F.RiphagenI.I.VereijkenB. & HelbostadJ.L. (2012). Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas 71(1) 1319. PubMed ID: 22134002 doi:10.1016/j.maturitas.2011.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThakkarJ.RedfernJ.ThiagalingamA. & ChowC.K. (2016). Patterns, predictors and effects of texting intervention on physical activity in CHD—Insights from the TEXT ME randomized clinical trial. European Journal of Preventive Cardiology 23(17) 18941902. PubMed ID: 27512051 doi:10.1177/2047487316664190

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TheouO.BlodgettJ.M.GodinJ. & RockwoodK. (2017). Association between sedentary time and mortality across levels of frailty. CMAJ: Canadian Medical Association Journal 189(33) E1056E1064. doi:10.1503/cmaj.161034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomasJ.G.RaynorH.A.BondD.S.LukeA.K.CardosoC.C.FosterG.D. & WingR.R. (2017). Weight loss in Weight Watchers Online with and without an activity tracking device compared to control: A randomized trial. Obesity 25(6) 10141021. PubMed ID: 28437597 doi:10.1002/oby.21846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomsenT.AadahlM.BeyerN.HetlandM.L.LøppenthinK.MidtgaardJ. . . . EsbensenB.A. (2016). Motivational counselling and SMS-reminders for reduction of daily sitting time in patients with rheumatoid arthritis: A descriptive randomised controlled feasibility study. BMC Musculoskeletal Disorders 17(1) 434. PubMed ID: 27756265 doi:10.1186/s12891-016-1266-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomsenT.AadahlM.BeyerN.HetlandM.L.LøppenthinK.MidtgaardJ. . . . EsbensenB.A. (2017). The efficacy of motivational counselling and SMS reminders on daily sitting time in patients with rheumatoid arthritis: A randomised controlled trial. Annals of the Rheumatic Diseases 76(9) 16031606. doi:10.1136/annrheumdis-2016-210953

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UhmK.E.YooJ.S.ChungS.H.LeeJ.D.LeeI.KimJ.I. . . . HwangJ.H. (2017). Effects of exercise intervention in breast cancer patients: is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Research and Treatment 161(3) 443452. PubMed ID: 27933450 doi:10.1007/s10549-016-4065-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der WeegenS.VerweyR.SpreeuwenbergM.TangeH.van der WeijdenT. & de WitteL. (2015). It’s life! Mobile and web-based monitoring and feedback tool embedded in primary care increases physical activity: A cluster randomized controlled trial. Journal of Medical Internet Research 17(7) e184. PubMed ID: 26209025 doi:10.2196/jmir.4579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VathsangamH. & SukhatmeG.S. (2014). Using phone-based activity monitors to promote physical activity in older adults: A pilot study. Presented at the2014 IEEE Healthcare Innovation Conference (HIC)Seattle, WA (pp. 4247). doi:10.1109/HIC.20147038870

    • Search Google Scholar
    • Export Citation
  • VerweyR.van der WeegenS.SpreeuwenbergM.TangeH.van der WeijdenT. & de WitteL. (2014). A pilot study of a tool to stimulate physical activity in patients with COPD or type 2 diabetes in primary care. Journal of Telemedicine and Telecare 20(1) 2934. PubMed ID: 24414397 doi:10.1177/1357633X13519057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2016a). WHO international classification of health interventions (ICHI). Retrieved from http://www.who.int/classifications/ichi/en/

    • Export Citation
  • World Health Organization. (2016b). WHO monitoring and evaluating digital health interventions. Retrieved from http://www.who.int/reproductivehealth/publications/mhealth/digital-health-interventions/en/

    • Export Citation
  • ZolfaghariM.MousavifarS.A.PedramS. & HaghaniH. (2012). Retracted: The impact of nurse short message services and telephone follow-ups on diabetic adherence: Which one is more effective? Journal of Clinical Nursing 21(13–14) 19221931. doi:10.1111/j.1365-2702.2011.03951.x

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 144 144 94
Full Text Views 8 8 3
PDF Downloads 8 8 3
Altmetric Badge
PubMed
Google Scholar