Is Exercise Prescription in Cardiac Rehabilitation Influenced by Physical Capacity or Cardiac Intervention?

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

This study investigated the influence of cardiac intervention and physical capacity of individuals attending an Australian outpatient cardiac rehabilitation program on the initial exercise prescription. A total of 85 patients commencing outpatient cardiac rehabilitation at a major metropolitan hospital had their physical capacity assessed by an incremental shuttle walk test, and the initial aerobic exercise intensity and resistance training load prescribed were recorded. Physical capacity was lower in surgical patients than nonsurgical patients. While physical capacity was higher in younger compared with older surgical patients, there was no difference between younger and older nonsurgical patients. The initial exercise intensity did not differ between surgical and nonsurgical patients. This study highlights the importance of preprogram exercise testing to enable exercise prescription to be individualized according to actual physical capacity, rather than symptoms, comorbidities and age, in order to maximize the benefit of cardiac rehabilitation.

Price and Bird are with the Discipline of Exercise Sciences, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia. Gordon is with the Discipline of Exercise Physiology, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia. Gordon, Gray, and Gergely are with Physiotherapy Department, Austin Health, Melbourne, Victoria, Australia. Benson is with the Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia.

Price (kym.price@rmit.edu.au) is corresponding author.
  • Ades, P.A., Maloney, A., Savage, P., & Carhart, R.L. (1999). Determinants of physical functioning in coronary patients: Response to cardiac rehabilitation. Archives of Internal Medicine, 159(19), 23572360. PubMed ID: 10547176 doi:10.1001/archinte.159.19.2357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ades, P.A., Savage, P.D., Brawner, C.A., Lyon, C.E., Ehrman, J.K., Bunn, J.Y., & Keteyian, S.J. (2006). Aerobic capacity in patients entering cardiac rehabilitation. Circulation, 113(23), 27062712. PubMed ID: 16754799 doi:10.1161/CIRCULATIONAHA.105.606624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ades, P.A., Savage, P.D., Tischler, M.D., Poehlman, E.T., Dee, J., & Niggel, J. (2002). Determinants of disability in older coronary patients. American Heart Journal, 143(1), 151156. PubMed ID: 11773926 doi:10.1067/mhj.2002.119379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Association of Cardiovascular and Pulmonary Rehabilitation. (2013). Guidelines for cardiac rehabilitation and secondary prevention programs (5th ed.). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Arena, R., Myers, J., Williams, M.A., Gulati, M., Kligfield, P., Balady, G.J., … Fletcher, G. (2007). Assessment of functional capacity in clinical and research settings: A scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation, 116(3), 329343. PubMed ID: 17576872 doi:10.1161/CIRCULATIONAHA.106.184461

    • Search Google Scholar
    • Export Citation
  • Australian Institute of Health and Welfare. (2017). Medicines for cardiovascular disease. (Cat. no.CVD 80). Canberra, Australia: Author.

    • Search Google Scholar
    • Export Citation
  • Borg, G.A.V. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. PubMed ID: 7154893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briffa, T.G., Eckermann, S.D., Griffiths, A.D., Harris, P.J., Heath, M.R., Freedman, S.B., … Keech, A.C. (2005). Cost-effectiveness of rehabilitation after an acute coronary event: A randomised controlled trial. The Medical Journal of Australia, 183(9), 450455. PubMed ID: 16274344

    • Search Google Scholar
    • Export Citation
  • Brown, K. (2003). A review to examine the use of SF-36 in cardiac rehabilitation. British Journal of Nursing, 12(15), 904909. PubMed ID: 12937366 doi:10.12968/bjon.2003.12.15.11422

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewart, C.K., Stewart, K.J., Gillilan, R.E., & Keleman, M.H. (1986). Self-efficacy mediates strength gains during circuit weight training in men with coronary artery disease. Medicine & Science in Sports & Exercise, 18(5), 531540. PubMed ID: 3773670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewart, C.K., & Taylor, C.B. (1985). The effects of early postmyocardial infarction exercise testing on subsequent quality of life. Quality of Life and Cardiovascular Care, 1(7), 162165.

    • Search Google Scholar
    • Export Citation
  • Fleg, J.L., & Lakatta, E.G. (1988). Role of muscle loss in age associated reduction in VO2max. Journal of Applied Physiology, 65(3), 11471151. PubMed ID: 3182484 doi:10.1152/jappl.1988.65.3.1147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleg, J.L., Morrell, C.H., Bos, A.G., Brant, L.J., Talbot, L.A., Wright, J.G., & Lakatta, E.G. (2005). Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation, 112(5), 674682. PubMed ID: 16043637 doi:10.1161/CIRCULATIONAHA.105.545459

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleg, J.L., & Strait, J. (2012). Age-associated changes in cardiovascular structure and function: A fertile milieu for future disease. Heart Failure Reviews, 17(4–5), 545554. PubMed ID: 21809160 doi:10.1007/s10741-011-9270-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, S.J., Singh, S.J., & Revill, S. (2005). Reproducibility and validity of the incremental shuttle walking test in patients following coronary artery bypass surgery. Physiotherapy, 91(1), 2227. doi:10.1016/j.physio.2004.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frontera, W.R., Meredith, C., O’Reilly, K., Knuttgen, H., & Evans, W. (1990). Strength training and determinants of VO2max in older men. Journal of Applied Physiology, 68(1), 329333. PubMed ID: 2312474 doi:10.1152/jappl.1990.68.1.329

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gore, C.J. (Ed.) (2000). Physiological tests for elite athletes. Champaign, IL: Human Kinetics.

  • Grace, S.L., Parsons, T.L., Heise, K., & Bacon, S.L. (2015). The Canadian Cardiac Rehabilitation Registry: Inaugural report on the status of cardiac rehabilitation in Canada. Rehabilitation Research and Practice, 2015, 278979. PubMed ID: 26357574 doi:10.1155/2015/278979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamm, L.F., Wenger, N.K., Arena, R., Forman, D.E., Lavie, C.J., Miller, T.D., & Thomas, R.J. (2013). Cardiac rehabilitation and cardiovascular disability: Role in assessment and improving functional capacity: A position statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention, 33(1), 111. PubMed ID: 23254246 doi:10.1097/HCR.0b013e31827aad9e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, D., Stevens, A., Eijnde, B.O., & Dendale, P. (2012). Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: A critical re-appraisal of current evidence. Sports Medicine, 42(1), 1130. PubMed ID: 22145810 doi:10.2165/11595460-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, L.C., Taylor, N.F., & McBurney, H. (2016). The 10m incremental shuttle walk test is a highly reliable field exercise test for patients referred to cardiac rehabilitation: A retest reliability study. Physiotherapy, 102(3), 243248. PubMed ID: 26538007 doi:10.1016/j.physio.2015.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S.L., Greening, N.J., Houchen-Wolloff, L., Bankart, J., Morgan, M.D., Steiner, M.C., & Singh, S.J. (2013). Age-specific normal values for the incremental shuttle walk test in a healthy British population. Journal of Cardiopulmonary Rehabilitation and Prevention, 33(5), 309313. PubMed ID: 23959208 doi:10.1097/HCR.0b013e3182a0297e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R.O., Murphy, B.M., Goble, A.J., Le Grande, M.R., & Worcester, M.C. (2008). Cardiac rehabilitation program attendance after coronary artery bypass surgery: Overcoming the barriers. Medical Journal of Australia, 188(12), 712714. PubMed ID: 18558894

    • Search Google Scholar
    • Export Citation
  • Hubert, H.B., Bloch, D.A., & Fries, J.F. (1993). Risk factors for physical disability in an aging cohort: The NHANES I epidemiologic followup study. Journal of Rheumatology, 20(3), 480488. PubMed ID: 8478855

    • Search Google Scholar
    • Export Citation
  • Hunt, J.O., Hendrata, M.V., & Myles, P.S. (2000). Quality of life 12 months after coronary artery bypass graft surgery. Heart & Lung, 29(6), 401411. PubMed ID: 11080320 doi:10.1067/mhl.2000.110578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izawa, K., Hirano, Y., Yamada, S., Oka, K., Omiya, K., & Iijima, S. (2004). Improvement in physiological outcomes and health-related quality of life following cardiac rehabilitation in patients with acute myocardial infarction. Circulation Journal, 68(4), 315320. PubMed ID: 15056827 doi:10.1253/circj.68.315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jette, D.U., & Downing, J. (1994). Health status of individuals entering a cardiac rehabilitation program as measured by the medical outcomes study 36-item short-form survey (SF-36). Physical Therapy, 74(6), 521527. PubMed ID: 8197238 doi:10.1093/ptj/74.6.521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, K., Taylor, R.S., Lip, G.Y., Singh, S., & Committee, B.S. (2008). Reproducibility and safety of the incremental shuttle walking test for cardiac rehabilitation. International Journal of Cardiology, 125(1), 144145. PubMed ID: 17408777 doi:10.1016/j.ijcard.2007.01.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminsky, L.A., Arena, R., & Myers, J. (2015). Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: Data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clinic Proceedings, 90(11), 15151523. PubMed ID: 26455884 doi:10.1016/j.mayocp.2015.07.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokkinos, P., Myers, J., Faselis, C., Panagiotakos, D.B., Doumas, M., Pittaras, A., … Fletcher, R. (2010). Exercise capacity and mortality in older men: A 20-year follow-up study. Circulation, 122(8), 790797. PubMed ID: 20697029 doi:10.1161/CIRCULATIONAHA.110.938852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiowetz, V., Weber, K., Volland, G., & Kashman, N. (1984). Reliability and validity of grip and pinch strength evaluations. The Journal of Hand Surgery, 9(2), 222226. PubMed ID: 6715829 doi:10.1016/S0363-5023(84)80146-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J.E. (2002). Exercise capacity and mortality among men referred for exercise testing. New England Journal of Medicine, 346(11), 793801. PubMed ID: 11893790 doi:10.1056/NEJMoa011858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Heart Foundation of Australia & Australian Cardiac Rehabilitation Association. (2004). Recommended framework for cardiac rehabilitation. Retrieved from https://www.heartfoundation.org.au/images/uploads/publications/Recommended-framework.pdf

    • Search Google Scholar
    • Export Citation
  • Neill, W.A., Branch, L.G., De Jong, G., Smith, N.E., Hogan, C.A., Corcoran, P.J., … Osberg, S. (1985). Cardiac disability: The impact of coronary heart disease on patients’ daily activities. Archives of Internal Medicine, 145(9), 16421647. PubMed ID: 4026494 doi:10.1001/archinte.1985.00360090110017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldridge, N.B., & Stump, T.E. (2004). Heart disease, comorbidity, and activity limitation in community-dwelling elderly. European Journal of Cardiovascular Prevention & Rehabilitation, 11(5), 427434. PubMed ID: 15616418 doi:10.1097/00149831-200410000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parriera, V.F., Janaudis-Ferreira, T., Evans, R.A., Mathur, S., Goldstein, R.S., & Brooks, D. (2014). Measurement properties of the incremental shuttle walk test: A systematic review. Chest, 145(6), 13571369. doi:10.1378/chest.13-2071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepera, G., McAllister, J., & Sandercock, G. (2010). Long-term reliability of the incremental shuttle walking test in clinically stable cardiovascular disease patients. Physiotherapy, 96(3), 222227. PubMed ID: 20674654 doi:10.1016/j.physio.2009.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, V., Alexander, J.L., & Phillips, W.T. (2004). Physical function assessment in cardiac rehabilitation: Self-report, proxy-report and performance-based measures. Journal of Cardiopulmonary Rehabilitation, 24(5), 287295. PubMed ID: 15602146 doi:10.1097/00008483-200409000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepoli, M.F., Corra, U., Benzer, W., Bjarnason-Wehrens, B., Dendale, P., Gaita, D., … Schmid, J.P. (2010a). Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. European Journal of Cardiovascular Prevention & Rehabilitation, 17(1), 117. doi:10.1097/HJR.0b013e3283313592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepoli, M.F., Corra, U., Benzer, W., Bjarnason-Wehrens, B., Dendale, P., Gaita, D., … Schmid, J.P. (2010b). Secondary prevention through cardiac rehabilitation: Physical activity counselling and exercise training: Key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. European Heart Journal Supplements, 31(16), 19671974. doi:10.1093/eurheartj/ehq236

    • Search Google Scholar
    • Export Citation
  • Pollock, M.L., Gaesser, G.A., Butcher, J.D., Despres, J.-P., Dishman, R.K., Franklin, B.A., & Garber, C.E. (1998). American College of Sports Medicine position stand: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine & Science in Sports & Exercise, 30(6), 975991.

    • Search Google Scholar
    • Export Citation
  • Price, K.J., Gordon, B.A., Bird, S.R., & Benson, A.C. (2016). A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus? European Journal of Preventive Cardiology, 23(16), 17151733. doi:10.1177/2047487316657669.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Probst, V.S., Hernandes, N.A., Teixeira, D.C., Felcar, J.M., Mesquita, R.B., Goncalves, C.G., … Pitta, F. (2012). Reference values for the incremental shuttle walking test. Respiratory Medicine, 106(2), 243248. PubMed ID: 21865021 doi:10.1016/j.rmed.2011.07.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riebe, D., Ehrman, J.K., Liguori, G., & Magal, M. (Eds.). (2018). ACSM’s guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer.

    • Search Google Scholar
    • Export Citation
  • Roberts, H.C., Denison, H.J., Martin, H.J., Patel, H.P., Syddall, H., Cooper, C., & Sayer, A.A. (2011). A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age and Ageing, 40(4), 423429. PubMed ID: 21624928 doi:10.1093/ageing/afr051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, H.J., Samani, N.J., & Singh, S.J. (2011). Can low risk cardiac patients be “fast tracked” to Phase IV community exercise schemes for cardiac rehabilitation? A randomised controlled trial. International Journal of Cardiology, 146(2), 159163. PubMed ID: 19616860 doi:10.1016/j.ijcard.2009.06.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandercock, G.R., Cardoso, F., Almodhy, M., & Pepera, G. (2013). Cardiorespiratory fitness changes in patients receiving comprehensive outpatient cardiac rehabilitation in the UK: A multicentre study. Heart, 99(11), 785790. PubMed ID: 23178183 doi:10.1136/heartjnl-2012-303055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S.J., Morgan, M.D.L., Scott, S., Walters, D., & Hardman, A. (1992). Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax, 47(12), 10191024. PubMed ID: 1494764 doi:10.1136/thx.47.12.1019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, R.W., Kaminsky, L.A., Porcari, J.P., Ruff, J.E., Savage, P.D., & Williams, M.A. (2018). Progression of exercise training in early outpatient cardiac rehabilitation: An official statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention, 38(3), 139146. PubMed ID: 29697494 doi:10.1097/HCR.0000000000000337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A.L., Hays, R.D., & Ware, J.E. (1988). The MOS Short-form General Health Survey: Reliability and validity in a patient population. Medical Care, 26(7), 724735. PubMed ID: 3393032 doi:10.1097/00005650-198807000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suaya, J.A., Shepard, D.S., Normand, S.L., Ades, P.A., Prottas, J., & Stason, W.B. (2007). Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation, 116(15), 16531662. PubMed ID: 17893274 doi:10.1161/CIRCULATIONAHA.107.701466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumide, T., Shimada, K., Ohmura, H., Onishi, T., Kawakami, K., Masaki, Y., … Daida, H. (2009). Relationship between exercise tolerance and muscle strength following cardiac rehabilitation: Comparison of patients after cardiac surgery and patients with myocardial infarction. Journal of Cardiology, 54(2), 273281. PubMed ID: 19782265 doi:10.1016/j.jjcc.2009.05.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vancampfort, D., Stubbs, B., Firth, J., & Koyanagi, A. (2018). Handgrip strength, chronic physical conditions and physical multimorbidity in middle-aged and older adults in six low- and middle income countries. European Journal of Internal Medicine. [Advance online publication] doi: 10.1016/j.ejim.2018.11.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ware, J.E., & Sherbourne, C.D. (1992). The MOS 36-item short form health survey: I. Conceptual framework and item selection. Medical Care, 30(6), 473483. PubMed ID: 1593914 doi:10.1097/00005650-199206000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 527 360 33
Full Text Views 40 22 1
PDF Downloads 14 8 0