Digit Force Controls and Corresponding Brain Activities in Finger Pressing Performance: A Comparison Between Older Adults and Young Individuals

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

This study aims toward an investigation and comparison of the digital force control and the brain activities of older adults and young groups during digital pressing tasks. A total of 15 young and 15 older adults were asked to perform force ramp tasks at different force levels with a custom pressing system. Near-infrared spectroscopy was used to collect the brain activities in the prefrontal cortex and primary motor area. The results showed that the force independence and hand function of the older adults were worse than that of the young adults. The cortical activations in the older adults were higher than those in the young group during the tasks. A significant hemodynamic between-group response and mild negative correlations between brain activation and force independence ability were found. Older adults showed poor force independence ability and manual dexterity and required additional brain activity to compensate for the degeneration.

Cheng, Chieh, Lin, Chen, Kuo, and Su are with the Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan. Chieh is also with Musculoskeletal Research Center, National Cheng Kung University, Tainan, Taiwan. Lin, Kuo, and Su are with Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan. Hsu and Kuo are with the Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Hsu is also with the Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Kuo (jkkuo@mail.ncku.edu.tw) and Su (fcsu@mail.ncku.edu.tw) are corresponding authors.L.C. Kuo and F.C. Su contributed equally to this work.
  • American Electroencephalographic Society. (1994). Guideline thirteen: Guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 11(1), 111–113.

    • Search Google Scholar
    • Export Citation
  • Amirjani, N., Ashworth, N.L., Olson, J.L., Morhart, M., & Chan, K.M. (2011). Validity and reliability of the Purdue Pegboard Test in carpal tunnel syndrome. Muscle & Nerve, 43(2), 171–177. PubMed ID: 21254080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwar, A.R., Muthalib, M., Perrey, S., Galka, A., Granert, O., Wolff, S., . . . Muthuraman, M. (2016). Effective connectivity of cortical sensorimotor networks during finger movement tasks: A simultaneous fNIRS, fMRI, EEG study. Brain Topography, 29(5), 645–660. PubMed ID: 27438589 doi:10.1007/s10548-016-0507-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J.L., & McNulty, P.A. (2013). The magnitude and rate of reduction in strength, dexterity and sensation in the human hand vary with ageing. Experimental Gerontology, 48(8), 756–765. PubMed ID: 23570975 doi:10.1016/j.exger.2013.03.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85. PubMed ID: 11931290

  • Carius, D., Andrä, C., Clauß, M., Ragert, P., Bunk, M., & Mehnert, J. (2016). Hemodynamic response alteration as a function of task complexity and expertise-an fNIRS study in Jugglers. Frontiers in Human Neuroscience, 10, 126. PubMed ID: 27064925 doi:10.3389/fnhum.2016.00126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmeli, E., Patish, H., & Coleman, R. (2003). The aging hand. Journal of Gerontology: Medical Sciences, 58 A(2), 146–152. doi:10.1093/gerona/58.2.M146

    • Search Google Scholar
    • Export Citation
  • Causby, R., Reed, L., McDonnell, M., & Hillier, S. (2014). Use of objective psychomotor tests in health professionals. Perceptual and Motor Skills, 118(3), 765–804. PubMed ID: 25068745 doi:10.2466/25.27.PMS.118k27w2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, H., Slobounov, S.M., & Ray, W. (2004). Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clinical Neurophysiology, 115(5), 1033–1043. PubMed ID: 15066527 doi:10.1016/j.clinph.2003.12.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, K.J. (1991). Grasp force control in older adults. Journal of Motor Behavior, 23(4), 251–258. PubMed ID: 14766507 doi:10.1080/00222895.1991.9942036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colier, W., Quaresima, V., Oeseburg, B., & Ferrari, M. (1999). Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Experimental Brain Research, 129(3), 457–461. PubMed ID: 10591917 doi:10.1007/s002210050913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, T., Liu, J., Sahgal, V., Brown, R., & Yue, G. (2001). Relationship between muscle output and functional MRI-measured brain activation. Experimental Brain Research, 140(3), 290–300. PubMed ID: 11681304 doi:10.1007/s002210100815

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diermayr, G., McIsaac, T.L., & Gordon, A.M. (2011). Finger force coordination underlying object manipulation in the elderly—a mini-review. Gerontology, 57(3), 217–227. PubMed ID: 20224251 doi:10.1159/000295921

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, A., Meek, J.H., Clemence, M., Elwell, C.E., Fallon, P., Tyszczuk, L., . . . Delpy, D.T. (1996). Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatric Research, 39(5), 889–894. PubMed ID: 8726247 doi:10.1203/00006450-199605000-00025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enoka, R.M., Christou, E.A., Hunter, S.K., Kornatz, K.W., Semmler, J.G., Taylor, A.M., & Tracy, B.L. (2003). Mechanisms that contribute to differences in motor performance between young and old adults. Journal of Electromyography and Kinesiology, 13(1), 1–12. PubMed ID: 12488083 doi:10.1016/s1050-6411(02)00084-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921–935. PubMed ID: 22510258 doi:10.1016/j.neuroimage.2012.03.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fling, B.W., & Seidler, R.D. (2011). Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. Cerebral Cortex, 22(11), 2643–2652. PubMed ID: 22166764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galganski, M.E., Fuglevand, A.J., & Enoka, R.M. (1993). Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. Journal of Neurophysiology, 69(6), 2108–2115. PubMed ID: 8350134 doi:10.1152/jn.1993.69.6.2108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, J., & Mathiowetz, V. (2003). Test-retest reliability of the Purdue Pegboard for persons with multiple sclerosis. The American Journal of Occupational Therapy, 57(1), 108–111. PubMed ID: 12549896

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guarnaccia, V.J., Daniels, L.K., & Sefick, W.J. (1975). Comparison of automated and standard administration of the Purdue Pegboard with mentally retarded adults. Perceptual and Motor Skills, 40(2), 371–374. PubMed ID: 1178298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackel, M.E., Wolfe, G.A., Bang, S.M., & Canfield, J.S. (1992). Changes in hand function in the aging adult as determined by the Jebsen test of hand function. Physical Therapy, 72(5), 373–377. PubMed ID: 1631206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S.K., Pereira, H.M., & Keenan, K.G. (2016). The aging neuromuscular system and motor performance. Journal of Applied Physiology, 121(4), 982–995. PubMed ID: 27516536 doi:10.1152/japplphysiol.00475.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Incel, N.A., Sezgin, M., As, I., Cimen, O.B., & Sahin, G. (2009). The geriatric hand: Correlation of hand-muscle function and activity restriction in elderly. International Journal of Rehabilitation Research, 32(3), 213–218. PubMed ID: 19293723 doi:10.1097/MRR.0b013e3283298226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashou, N.H., Giacherio, B.M., Nahhas, R.W., & Jadcherla, S.R. (2016). Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses. Neurophotonics, 3(2), 025006. PubMed ID: 27335888 doi:10.1117/1.NPh.3.2.025006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keogh, J., Morrison, S., & Barrett, R. (2006). Age-related differences in inter-digit coupling during finger pinching. European Journal of Applied Physiology, 97(1), 76–88. PubMed ID: 16496196 doi:10.1007/s00421-006-0151-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinoshita, H., & Francis, P.R. (1996). A comparison of prehension force control in young and elderly individuals. European Journal of Applied Physiology & Occupational Physiology, 74(5), 450–460. PubMed ID: 8954293 doi:10.1007/BF02337726

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenraadt, K.L., Duysens, J., Smeenk, M., & Keijsers, N.L. (2012). Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity. Journal of Neural Engineering, 9(4), 046010. PubMed ID: 22763344 doi:10.1088/1741-2560/9/4/046010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupenevich, R.L., Murray, N., Rider, P.M., Domire, Z.J., & DeVita, P. (2015). The relationships between muscle force steadiness and visual steadiness in young and old adults. Motor Control, 19(1), 60–74. PubMed ID: 25029291 doi:10.1123/mc.2013-0083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuboyama, N., Nabetani, T., Shibuya, K., Machida, K., & Ogaki, T. (2004). The effect of maximal finger tapping on cerebral activation. Journal of Physiological Anthropology & Applied Human Science, 23(4), 105–110. PubMed ID: 15314267 doi:10.2114/jpa.23.105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leff, D.R., Orihuela-Espina, F., Elwell, C.E., Athanasiou, T., Delpy, D.T., Darzi, A.W., & Yang, G.Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage, 54(4), 2922–2936. PubMed ID: 21029781 doi:10.1016/j.neuroimage.2010.10.058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P.Y., Lin, S.I., & Chen, J.J. (2012). Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 78–84. PubMed ID: 21984524 doi:10.1109/TNSRE.2011.2170181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, T.Y., Wu, J.S., Lin, L.L., Ho, T.C., Lin, P.Y., & Chen, J.J. (2016). Assessments of muscle oxygenation and cortical activity using functional near-infrared spectroscopy in healthy adults during hybrid activation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 1–9. PubMed ID: 25974942 doi:10.1109/TNSRE.2015.2429655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindberg, P., Ody, C., Feydy, A., & Maier, M.A. (2009). Precision in isometric precision grip force is reduced in middle-aged adults. Experimental Brain Research, 193(2), 213–224. PubMed ID: 18953529 doi:10.1007/s00221-008-1613-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C.J., Marie, D., Fredrick, A., Bertram, J., Utley, K., & Fess, E.E. (2017). Predicting hand function in older adults: Evaluations of grip strength, arm curl strength, and manual dexterity. Aging Clinical and Experimental Research, 29(4), 753–760. doi:10.1007/s40520-016-0628-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Terekhov, A.V., Latash, M.L., & Zatsiorsky, V.M. (2013). Comparison of interfinger connection matrix computation techniques. Journal of Applied Biomechanics, 29(5), 525–534. PubMed ID: 23183029 doi:10.1123/jab.29.5.525

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Das, S., Callicott, J.H., & Weinberger, D.R. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58(4), 630–635. PubMed ID: 11865144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehagnoul-Schipper, D.J., van der Kallen, B.F., Colier, W.N., van der Sluijs, M.C., van Erning, L.J., Thijssen, H.O., . . . Jansen, R.W. (2002). Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Human Brain Mapping, 16(1), 14–23. PubMed ID: 11870923 doi:10.1002/hbm.10026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirelman, A., Maidan, I., Bernad-Elazari, H., Shustack, S., Giladi, N., & Hausdorff, J.M. (2017). Effects of aging on prefrontal brain activation during challenging walking conditions. Brain and Cognition, 115, 41–46. PubMed ID: 28433922 doi:10.1016/j.bandc.2017.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noble, J.W., Eng, J.J., Kokotilo, K.J., & Boyd, L.A. (2011). Aging effects on the control of grip force magnitude: An fMRI study. Experimental Gerontology, 46(6), 453–461. PubMed ID: 21296649 doi:10.1016/j.exger.2011.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohsugi, H., Ohgi, S., Shigemori, K., & Schneider, E.B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neuroscience, 14, 10. PubMed ID: 23327197 doi:10.1186/1471-2202-14-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multifinger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108(3), 915–924. PubMed ID: 22552184 doi:10.1152/jn.00043.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranganathan, V.K., Siemionow, V., Sahgal, V., & Yue, G.H. (2001). Effects of aging on hand function. Journal of the American Geriatrics Society, 49(11), 1478–1484. PubMed ID: 11890586 doi:10.1046/j.1532-5415.2001.4911240.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter-Lorenz, P.A., & Cappell, K.A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. Neuroimage, 32(3), 1345–1354. PubMed ID: 16798017 doi:10.1016/j.neuroimage.2006.05.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, H., Fuchino, Y., Kiguchi, M., Katura, T., Maki, A., Yoro, T., & Koizumi, H. (2005). Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation. Journal of Biomedical Optics, 10(4), 44001. PubMed ID: 16178635 doi:10.1117/1.1960907

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., Ito, M., Suto, T., Kameyama, M., Suda, M., Yamagishi, Y., . . . Mikuni, M. (2007). Time courses of brain activation and their implications for function: A multichannel near-infrared spectroscopy study during finger tapping. Neuroscience Research, 58(3), 297–304. PubMed ID: 17499873 doi:10.1016/j.neures.2007.03.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholkmann, F., Kleiser, S., Metz, A.J., Zimmermann, R., Pavia, J.M., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6–27. PubMed ID: 23684868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibuya, K. (2011). The activity of the primary motor cortex ipsilateral to the exercising hand decreases during repetitive handgrip exercise. Physiological Measurement, 32(12), 1929–1939. PubMed ID: 22048722 doi:10.1088/0967-3334/32/12/004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibuya, K., Kuboyama, N., & Tanaka, J. (2014). Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force. Physiological Measurement, 35(3), 417–428. PubMed ID: 24521545 doi:10.1088/0967-3334/35/3/417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiffman, L.M. (1992). Effects of aging on adult hand function. The American Journal of Occupational Therapy, 46(9), 785–792. PubMed ID: 1514564 doi:10.5014/ajot.46.9.785

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Li, S., Kang, N., Zatsiorsky, V.M., & Latash, M.L. (2003). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of Applied Physiology, 94(1), 259–270. PubMed ID: 12391031 doi:10.1152/japplphysiol.00643.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Scholz, J.P., Zatsiorsky, V.M., & Latash, M.L. (2004). Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Experimental Brain Research, 156(3), 282–292. PubMed ID: 14985892 doi:10.1007/s00221-003-1786-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slobounov, S., Chiang, H., Johnston, J., & Ray, W. (2002). Modulated cortical control of individual fingers in experienced musicians: An EEG study. Clinical Neurophysiology, 113(12), 2013–2024. PubMed ID: 12464342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smutok, M.A., Grafman, J., Salazar, A.M., Sweeney, J.K., Jonas, B.S., & DiRocco, P.J. (1989). Effects of Unilateral Brain Damage on Contralateral and Ipsilateral Upper Extremity Function in Hemiplegia. Physical Therapy, 69(3), 195–203. PubMed ID: 2919190 doi:10.1093/ptj/69.3.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, A.B., Hagert, C.G., & Swanson, G. (1983). Evaluation of impairment of hand function. The Journal of Hand Surgery, 8(5), 709–722. doi:10.1016/S0363-5023(83)80253-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takeda, K., Gomi, Y., Imai, I., Shimoda, N., Hiwatari, M., & Kato, H. (2007). Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy. Neuroscience Research, 59(2), 136–144. PubMed ID: 17681629 doi:10.1016/j.neures.2007.06.1466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiffin, J., & Asher, E.J. (1948). The Purdue Pegboard: Norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234. PubMed ID: 18867059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieluf, S., Godde, B., Reuter, E.M., & Voelcker-Rehage, C. (2013). Age-related differences in finger force control are characterized by reduced force production. Experimental Brain Research, 224(1), 107–117. PubMed ID: 23076430 doi:10.1007/s00221-012-3292-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieluf, S., Temprado, J.J., Berton, E., Jirsa, V.K., & Sleimen-Malkoun, R. (2015). Effects of task and age on the magnitude and structure of force fluctuations: Insights into underlying neuro-behavioral processes. BMC Neuroscience, 16(1), 12. doi:10.1186/s12868-015-0153-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voelcker-Rehage, C., & Alberts, J.L. (2005). Age-related changes in grasping force modulation. Experimental Brain Research, 166(1), 61–70. PubMed ID: 16096780 doi:10.1007/s00221-005-2342-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, N.S., & Frackowiak, R.S.J. (2003). Age-related changes in the neural correlates of motor performance. Brain, 126(4), 873–888. doi:10.1093/brain/awg071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L.A., Martin, J.R., Latash, M.L., & Zatsiorsky, V.M. (2014). Finger enslaving in the dominant and non-dominant hand. Human Movement Science, 33, 185–193. PubMed ID: 24360253 doi:10.1016/j.humov.2013.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.H., Truglio, T.S., Zatsiorsky, V.M., & Latash, M.L. (2015). Learning to combine high variability with high precision: Lack of transfer to a different task. Journal of Motor Behavior, 47(2), 153–165. PubMed ID: 25365477 doi:10.1080/00222895.2014.961892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187–195. PubMed ID: 10766271 doi:10.1007/s002219900261

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 53 53 32
Full Text Views 8 8 6
PDF Downloads 8 8 7