Are the Current Cardiac Rehabilitation Programs Optimized to Improve Cardiorespiratory Fitness in Patients? A Meta-Analysis

in Journal of Aging and Physical Activity

Click name to view affiliation

Agustín Manresa-Rocamora
Search for other papers by Agustín Manresa-Rocamora in
Current site
Google Scholar
PubMed
Close
,
José Manuel Sarabia
Search for other papers by José Manuel Sarabia in
Current site
Google Scholar
PubMed
Close
,
Julio Sánchez-Meca
Search for other papers by Julio Sánchez-Meca in
Current site
Google Scholar
PubMed
Close
,
José Oliveira
Search for other papers by José Oliveira in
Current site
Google Scholar
PubMed
Close
,
Francisco Jose Vera-Garcia
Search for other papers by Francisco Jose Vera-Garcia in
Current site
Google Scholar
PubMed
Close
, and
Manuel Moya-Ramón
Search for other papers by Manuel Moya-Ramón in
Current site
Google Scholar
PubMed
Close
Restricted access

Previous meta-analyses have shown that high-intensity interval training (HIIT) is more suitable than moderate continuous training (MCT) for improving peak oxygen uptake (VO2peak) in patients with coronary artery disease. However, none of these meta-analyses have tried to explain the heterogeneity of the empirical studies in optimizing cardiac rehabilitation programs. Therefore, our aims were (a) to estimate the effect of MCT and HIIT on VO2peak, and (b) to find the potential moderator variables. A search was conducted in PubMed, Scopus, and ScienceDirect. Out of the 3,110 references retrieved, 29 studies fulfilled the selection criteria to be included in our meta-analysis. The mean difference was used as the effect size index. Our results showed significant enhancements in VO2peak after cardiac rehabilitation based on MCT and HIIT (mean difference = 3.23; 95% confidence interval [2.81, 3.65] ml·kg−1·min−1 and mean difference = 4.61; 95% confidence interval [4.02, 5.19] ml·kg−1·min−1, respectively), with greater increases after HIIT (p < .001). Heterogeneity analyses reached statistical significance with moderate heterogeneity for MCT (p < .001; I2 = 67.0%), whereas no heterogeneity was found for the effect of HIIT (p = .220; I2 = 22.0%). Subgroup analyses showed significant between-group heterogeneity of the MCT-induced effect based on the training mode (p < .001; I2 = 90.4%), the risk of a new event (p = .010; I2 = 77.4%), the type of cardiovascular event (p = .009; I2 = 84.8%), the wait time to start cardiac rehabilitation (p = .010; I2 = 76.6%), and participant allocation (p = .002; I2 = 89.9%). Meta-regressions revealed that the percentages of patients undergoing a revascularization procedure (B = −0.022; p = .041) and cardiorespiratory fitness at baseline (B = −0.103; p = .025) were inversely related to the MCT-induced effect on the VO2peak.

Manresa-Rocamora, Sarabia, Vera-Garcia, and Moya-Ramón are with the Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, Elche, Spain. Sarabia and Moya-Ramón are also with the Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Miguel Hernandez University, Alicante, Spain. Sánchez-Meca is with the Department of Basic Psychology and Methodology, Faculty of Psychology, University of Murcia, Murcia, Spain. Oliveira is with the Faculty of Sport, Research Center in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal.

Moya-Ramón (mmoya@umh.es) is corresponding author.

Supplementary Materials

    • Supplementary Figure 1 (tiff 409 KB)
    • Supplementary Figure 2 (tiff 409 KB)
  • Collapse
  • Expand
  • *

    Aamot, I.L., Forbord, S.H., Gustad, K., Løckra, V., Stensen, A., Berg, A.T., … Støylen, A. (2014). Home-based versus hospital-based high-intensity interval training in cardiac rehabilitation: A randomized study. European Journal of Preventive Cardiology, 21(9), 10701078. PubMed ID: 23613224 doi:10.1177/2047487313488299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, L., Oldridge, N., Thompson, D.R., Zwisler, A.D., Rees, K., Martin, N., & Taylor, R.S. (2016). Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. Journal of the American College of Cardiology, 67(1), 112. PubMed ID: 26764059 doi:10.1016/j.jacc.2015.10.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballesta García, I., Rubio Arias, J., Ramos Campo, D.J., Martínez González-Moro, I., & Carrasco Poyatos, M. (2019). High-intensity interval training dosage for heart failure and coronary artery disease cardiac rehabilitation. A systematic review and meta-analysis. Revista Espanola de Cardiologia, 72(3), 233243. doi:10.1016/j.rec.2018.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Blumenthal, J.A., Sherwood, A., Babyak, M.A., Watkins, L.L., Waugh, R., Georgiades, A., … Hinderliter, A. (2005). Effects of exercise and stress management training on markers of cardiovascular risk in patients with ischemic heart disease: A randomized controlled trial. JAMA, 293(13), 16261634. PubMed ID: 15811982 doi:10.1001/jama.293.13.1626

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borenstein, M., Hedges, L.V., Higgins, J.P., & Rothstein, H.R. (2011). Introduction to meta-analysis. Chichester, UK: John Wiley & Sons.

    • Search Google Scholar
    • Export Citation
  • *

    Cardozo, G.G., Oliveira, R.B., & Farinatti, P.T. (2015). Effects of high intensity interval versus moderate continuous training on markers of ventilatory and cardiac efficiency in coronary heart disease patients. ScientificWorldJournal, 2015, 192479. PubMed ID: 25741531 doi:10.1155/2015/192479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Choi, H.Y., Han, H.J., Choi, J.W., Jung, H.Y., & Joa, K.L. (2018). Superior effects of high-intensity interval training compared to conventional therapy on cardiovascular and psychological aspects in myocardial infarction. Annals of Rehabilitation Medicine, 42(1), 145153. PubMed ID: 29560335 doi:10.5535/arm.2018.42.1.145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, Z.C., Suskin, N., Aggarwal, S., & Grace, S.L. (2015). Cardiac rehabilitation wait times and relation to patient outcomes. European Journal of Physical and Rehabilitation Medicine, 51(3), 301309. PubMed ID: 25213305

    • Search Google Scholar
    • Export Citation
  • *

    Conraads, V.M., Pattyn, N., De Maeyer, C., Beckers, P.J., Coeckelberghs, E., Cornelissen, V.A., … Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 179, 203210. PubMed ID: 25464446 doi:10.1016/j.ijcard.2014.10.155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, H., & Hedges, L.V. (1993). The handbook of research synthesis. New York, NY: Russell Sage Foundation.

  • Cooper, H., Hedges, L.V., & Valentine, J.C. (2019). The handbook of research synthesis and meta-analysis. New York, NY: Russell Sage Foundation.

  • *

    Currie, K.D., Bailey, K.J., Jung, M.E., McKelvie, R.S., & MacDonald, M.J. (2015). Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. Journal of Science and Medicine in Spor, 18(6), 637642. doi:10.1016/j.jsams.2014.09.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudas, K., Björck, L., Jernberg, T., Lappas, G., Wallentin, L., & Rosengren, A. (2013). Differences between acute myocardial infarction and unstable angina: A longitudinal cohort study reporting findings from the register of information and knowledge about Swedish heart intensive care admissions (RIKS-HIA). BMJ Open, 3(1). doi:10.1136/bmjopen-2012-002155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, A.D., Rajopadhyaya, K., Bentley, D.J., Beltrame, J.F., & Aromataris, E.C. (2015). Interval training versus continuous exercise in patients with coronary artery disease: A meta-analysis. Heart, Lung and Circulation, 24(2), 149157. PubMed ID: 25306500 doi:10.1016/j.hlc.2014.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Eto, Y., Koike, A., Matsumoto, A., Momomura, S., Tajima, A., Aizawa, T., … Itoh, H. (2004). Early aerobic training increases end-tidal CO2 pressure during exercise in patients after acute myocardial infarction. Circulation Journal, 68(8), 778783. PubMed ID: 15277738 doi:10.1253/circj.68.778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, G.F., Balady, G.J., Amsterdam, E.A., Chaitman, B., Eckel, R., Fleg, J., … Bazzarre, T. (2001). Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation, 104(14), 16941740. PubMed ID: 11581152 doi:10.1161/hc3901.095960

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frangogiannis, N.G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology, 11(5), 255265. PubMed ID: 24663091 doi:10.1038/nrcardio.2014.28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayda, M., Ribeiro, P.A., Juneau, M., & Nigam, A. (2016). Comparison of different forms of exercise training in patients with cardiac disease: Where does high-intensity interval training fit? The Canadian Journal of Cardiology, 32(4), 485494. PubMed ID: 26927863 doi:10.1016/j.cjca.2016.01.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Ghroubi, S., Elleuch, W., Abid, L., Abdenadher, M., Kammoun, S., & Elleuch, M.H. (2013). Effects of a low-intensity dynamic-resistance training protocol using an isokinetic dynamometer on muscular strength and aerobic capacity after coronary artery bypass grafting. Annals of Physical and Rehabilitation Medicine, 56(2), 85101. PubMed ID: 23414745 doi:10.1016/j.rehab.2012.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Giallauria, F., Acampa, W., Ricci, F., Vitelli, A., Maresca, L., Mancini, M., … Vigorito, C. (2012). Effects of exercise training started within 2 weeks after acute myocardial infarction on myocardial perfusion and left ventricular function: A gated SPECT imaging study. European Journal of Preventive Cardiology, 19(6), 14101419. PubMed ID: 21965517 doi:10.1177/1741826711425427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Giallauria, F., Acampa, W., Ricci, F., Vitelli, A., Torella, G., Lucci, R., … Vigorito, C. (2013). Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function. European Journal of Nuclear Medicine and Molecular Imaging, 40(3), 315324. PubMed ID: 23224706 doi:10.1007/s00259-012-2302-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Giallauria, F., Cirillo, P., D’Agostino, M., Petrillo, G., Vitelli, A., Pacileo, M., … Vigorito, C. (2011). Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. Journal of Cardiac Failure, 17(2), 108114. PubMed ID: 21300299 doi:10.1016/j.cardfail.2010.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Giallauria, F., De Lorenzo, A., Pilerci, F., Manakos, A., Lucci, R., Psaroudaki, M., … Vigorito, C. (2006). Reduction of N terminal-pro-brain (B-type) natriuretic peptide levels with exercise-based cardiac rehabilitation in patients with left ventricular dysfunction after myocardial infarction. European Journal of Cardiovascular Prevention & Rehabilitation, 13(4), 625632. doi:10.1097/01.hjr.0000209810.59831.f4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Giallauria, F., Lucci, R., De Lorenzo, A., D’Agostino, M., Del Forno, D., & Vigorito, C. (2006). Favourable effects of exercise training on N-terminal pro-brain natriuretic peptide plasma levels in elderly patients after acute myocardial infarction. Age & Ageing, 35(6), 601607. doi:10.1093/ageing/afl098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes-Neto, M., Durães, A.R., Reis, H., Neves, V.R., Martinez, B.P., & Carvalho, V.O. (2017). High-intensity interval training versus moderate-intensity continuous training on exercise capacity and quality of life in patients with coronary artery disease: A systematic review and meta-analysis. European Journal of Preventive Cardiology, 24(16), 16961707. PubMed ID: 28825321 doi:10.1177/2047487317728370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannan, A.L., Hing, W., Simas, V., Climstein, M., Coombes, J.S., Jayasinghe, R., … Furness, J. (2018). High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access Journal of Sports Medicine, 9, 117. PubMed ID: 29416382 doi:10.2147/oajsm.S150596

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haykowsky, M., Scott, J., Esch, B., Schopflocher, D., Myers, J., Paterson, I., … Clark, A.M. (2011). A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: Start early and go longer for greatest exercise benefits on remodeling. Trials, 12(1), 92. PubMed ID: 21463531 doi:10.1186/1745-6215-12-92

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Heber, S., Fischer, B., Sallaberger-Lehner, M., Hausharter, M., Ocenasek, H., Gleiss, A., … Volf, I. (2020). Effects of high-intensity interval training on platelet function in cardiac rehabilitation: A randomised controlled trial. Heart, 106(1), 6979. PubMed ID: 31315940 doi:10.1136/heartjnl-2019-315130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Helgerud, J., Karlsen, T., Kim, W.Y., Høydal, K.L., Støylen, A., Pedersen, H., … Hoff, J. (2011). Interval and strength training in CAD patients. International Journal of Sports Medicine, 32(1), 5459. PubMed ID: 21072747 doi:10.1055/s-0030-1267180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, J.P., & Thompson, S.G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 15391558. PubMed ID: 12111919 doi:10.1002/sim.1186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huedo-Medina, T.B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychological Methods, 11(2), 193206. PubMed ID: 16784338 doi:10.1037/1082-989x.11.2.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J.E., & Schmidt, F.L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Thousand Oaks, CA: Sage.

  • *

    Jayo-Montoya, J.A., Maldonado-Martín, S., Aispuru, G.R., Gorostegi-Anduaga, I., Gallardo-Lobo, R., Matajira-Chia, T., … Blanco-Guzmán, S. (2020). Low-volume high-intensity aerobic interval training is an efficient method to improve cardiorespiratory fitness after myocardial infarction: Pilot study from the interfarct project. Journal of Cardiopulmonary Rehabilitation and Prevention, 40(1), 4854. PubMed ID: 31693643 doi:10.1097/hcr.0000000000000453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalisnik, J.M., Avbelj, V., Trobec, R., Ivaskovic, D., Vidmar, G., Troise, G., & Gersak, B. (2006). Assessment of cardiac autonomic regulation and ventricular repolarization after off-pump coronary artery bypass grafting. The Heart Surgery Forum, 9(3), E661E667. PubMed ID: 16753938 doi:10.1532/hsf98.2006-1020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemi, O.J., Haram, P.M., Loennechen, J.P., Osnes, J.B., Skomedal, T., Wisløff, U., & Ellingsen, Ø. (2005). Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research, 67(1), 161172. PubMed ID: 15949480 doi:10.1016/j.cardiores.2005.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Keteyian, S.J., Hibner, B.A., Bronsteen, K., Kerrigan, D., Aldred, H.A., Reasons, L.M., … Ehrman, J.K. (2014). Greater improvement in cardiorespiratory fitness using higher-intensity interval training in the standard cardiac rehabilitation setting. Journal of Cardiopulmonary Rehabilitation and Prevention, 34(2), 98105. PubMed ID: 24531203 doi:10.1097/hcr.0000000000000049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Kim, C., Choi, H.E., & Lim, M.H. (2015). Effect of high interval training in acute myocardial infarction patients with drug-eluting stent. American Journal of Physical Medicine & Rehabilitation, 94(10, Suppl. 1), 879886. PubMed ID: 25802960 doi:10.1097/phm.0000000000000290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., … Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA, 301(19), 20242035. PubMed ID: 19454641 doi:10.1001/jama.2009.681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraal, J.J., Vromen, T., Spee, R., Kemps, H.M.C., & Peek, N. (2017). The influence of training characteristics on the effect of exercise training in patients with coronary artery disease: Systematic review and meta-regression analysis. International Journal of Cardiology, 245, 5258. PubMed ID: 28735757 doi:10.1016/j.ijcard.2017.07.051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Lee, B.C., Hsu, H.C., Tseng, W.Y., Su, M.Y., Chen, S.Y., Wu, Y.W., … Chen, M.F. (2009). Effect of cardiac rehabilitation on angiogenic cytokines in postinfarction patients. Heart, 95(12), 10121018. PubMed ID: 19304668 doi:10.1136/hrt.2008.153510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leon, A.S., Franklin, B.A., Costa, F., Balady, G.J., Berra, K.A., Stewart, K.J., … Lauer, M.S. (2005). Cardiac rehabilitation and secondary prevention of coronary heart disease: An American Heart Association scientific statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), in collaboration with the American association of Cardiovascular and Pulmonary Rehabilitation. Circulation, 111(3), 369376. PubMed ID: 15668354 doi:10.1161/01.Cir.0000151788.08740.5c

    • Search Google Scholar
    • Export Citation
  • Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100. PubMed ID: 19621070 doi:10.1371/journal.pmed.1000100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K., Ho, S., Fildes, J., & Ooi, S.Y. (2016). High Intensity interval versus moderate intensity continuous training in patients with coronary artery disease: A meta-analysis of physiological and clinical parameters. Heart, Lung and Circulation, 25(2), 166174. PubMed ID: 26375499 doi:10.1016/j.hlc.2015.06.828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Madssen, E., Moholdt, T., Videm, V., Wisløff, U., Hegbom, K., & Wiseth, R. (2014). Coronary atheroma regression and plaque characteristics assessed by grayscale and radiofrequency intravascular ultrasound after aerobic exercise. American Journal of Cardiology, 114(10), 15041511. PubMed ID: 25248813 doi:10.1016/j.amjcard.2014.08.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, C.G., Sherrington, C., Herbert, R.D., Moseley, A.M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83(8), 713721. PubMed ID: 12882612 doi:10.1093/ptj/83.8.713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, K., Samek, L., Schwaibold, M., Westbrook, S., Hajric, R., Beneke, R., … Roskamm, H. (1997). Interval training in patients with severe chronic heart failure: Analysis and recommendations for exercise procedures. Medicine & Science in Sports & Exercise, 29(3), 306312. PubMed ID: 9139168 doi:10.1097/00005768-199703000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Oliveira, N.L., Ribeiro, F., Teixeira, M., Campos, L., Alves, A.J., Silva, G., & Oliveira, J. (2014). Effect of 8-week exercise-based cardiac rehabilitation on cardiac autonomic function: A randomized controlled trial in myocardial infarction patients. American Heart Journal, 167(5), 753761.e3. PubMed ID: 24766987 doi:10.1016/j.ahj.2014.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattyn, N., Beulque, R., & Cornelissen, V. (2018). Aerobic interval vs. continuous training in patients with coronary artery disease or heart failure: An updated systematic review and meta-analysis with a focus on secondary outcomes. Sports Medicine, 48(5), 11891205. PubMed ID: 29502328 doi:10.1007/s40279-018-0885-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattyn, N., Coeckelberghs, E., Buys, R., Cornelissen, V.A., & Vanhees, L. (2014). Aerobic interval training vs. moderate continuous training in coronary artery disease patients: A systematic review and meta-analysis. Sports Medicine, 44(5), 687700. PubMed ID: 24549476 doi:10.1007/s40279-014-0158-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Prado, D.M., Rocco, E.A., Silva, A.G., Rocco, D.F., Pacheco, M.T., Silva, P.F., & Furlan, V. (2016). Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease. Brazilian Journal of Medical and Biological Research, 49(2), e4890. PubMed ID: 26871969 doi:10.1590/1414-431x20154890

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Ribeiro, F., Alves, A.J., Teixeira, M., Miranda, F., Azevedo, C., Duarte, J.A., & Oliveira, J. (2012). Exercise training increases interleukin-10 after an acute myocardial infarction: A randomised clinical trial. International Journal of Sports Medicine, 33(3), 192198. PubMed ID: 22187388 doi:10.1055/s-0031-1297959

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Rognmo, Ø., Hetland, E., Helgerud, J., Hoff, J., & Slørdahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Cardiovascular Prevention & Rehabilitation, 11(3), 216222. PubMed ID: 15179103 doi:10.1097/01.hjr.0000131677.96762.0c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Meca, J., & Marín-Martínez, F. (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods, 13(1), 3148. PubMed ID: 18331152 doi:10.1037/1082-989x.13.1.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Støren, Ø., Helgerud, J., Sæbø, M., Støa, E.M., Bratland-Sanda, S., Unhjem, R.J., … Wang, E. (2017). The effect of age on the VO2max response to high-intensity interval training. Medicine & Science in Sports & Exercise, 49(1), 7885. PubMed ID: 27501361 doi:10.1249/mss.0000000000001070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Subiela, J.V., Torres, S.H., De Sanctis, J.B., & Hernández, N. (2018). Cardiorespiratory responses, nitric oxide production and inflammatory factors in patients with myocardial infarction after rehabilitation. Nitric Oxide, 76, 8796. PubMed ID: 29534920 doi:10.1016/j.niox.2018.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Takagi, S., Murase, N., Kime, R., Niwayama, M., Osada, T., & Katsumura, T. (2016). Aerobic training enhances muscle deoxygenation in early post-myocardial infarction. European Journal of Applied Physiology, 116(4), 673685. PubMed ID: 26759155 doi:10.1007/s00421-016-3326-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Takeyama, J., Itoh, H., Kato, M., Koike, A., Aoki, K., Fu, L.T., … Katagiri, T. (2000). Effects of physical training on the recovery of the autonomic nervous activity during exercise after coronary artery bypass grafting: Effects of physical training after CABG. Japanese Circulation Journal, 64(11), 809813. PubMed ID: 11110422 doi:10.1253/jcj.64.809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjønna, A.E., Lee, S.J., Rognmo, Ø., Stølen, T.O., Bye, A., Haram, P.M., … Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346354. doi:10.1161/circulationaha.108.772822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tukey, J.W. (1977). Exploratory data analysis (Vol. 2). Reading, MA: Addison-Wesley Publishing Company.

  • Vanhees, L., Geladas, N., Hansen, D., Kouidi, E., Niebauer, J., Reiner, Z., … Vanuzzo, D. (2012). Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: Recommendations from the EACPR. Part II. European Journal of Preventive Cardiology, 19(5), 10051033. PubMed ID: 22637741 doi:10.1177/1741826711430926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Villelabeitia-Jaureguizar, K., Vicente-Campos, D., Berenguel Senen, A., Hernández Jiménez, V., Ruiz Bautista, L., Barrios Garrido-Lestache, M.E., & López Chicharro, J. (2019). Mechanical efficiency of high versus moderate intensity aerobic exercise in coronary heart disease patients: A randomized clinical trial. Cardiology Journal, 26(2), 130137. PubMed ID: 29745970 doi:10.5603/CJ.a2018.0052

    • Search Google Scholar
    • Export Citation
  • Vogiatzis, I., Terzis, G., Nanas, S., Stratakos, G., Simoes, D.C., Georgiadou, O., … Roussos, C. (2005). Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest, 128(6), 38383845. PubMed ID: 16354852 doi:10.1378/chest.128.6.3838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • *

    Vona, M., Codeluppi, G.M., Iannino, T., Ferrari, E., Bogousslavsky, J., & von Segesser, L.K. (2009). Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation, 119(12), 16011608. PubMed ID: 19289636 doi:10.1161/circulationaha.108.821736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisløff, U., Ellingsen, Ø., & Kemi, O.J. (2009). High-intensity interval training to maximize cardiac benefits of exercise training? Exercise and Sport Sciences Reviews, 37(3), 139146. doi:10.1097/JES.0b013e3181aa65fc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2018). Noncommunicable diseases country profiles 2018. Geneva, Switzerland: Author.

  • Xie, B., Yan, X., Cai, X., & Li, J. (2017). Effects of high-intensity interval training on aerobic capacity in cardiac patients: A systematic review with meta-analysis. BioMed Research International, 2017, 5420840. PubMed ID: 28386556 doi:10.1155/2017/5420840

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3095 1232 30
Full Text Views 39 10 0
PDF Downloads 51 14 1