Comparison of Telomere Length in Young and Master Endurance Runners and Sprinters

in Journal of Aging and Physical Activity
View More View Less
  • 1 School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
  • | 2 Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
  • | 3 NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
Restricted access

It is unclear how running modality influences telomere length (TL). This single laboratory visit study compared the TL of master sprinters and endurance runners with their young counterparts. The correlation between leukocyte and buccal cell TL in athletes was also explored. Participants consisted of 11 young controls, 11 young sprinters, 12 young endurance runners, 12 middle-aged controls, 11 master sprinters, and 12 master endurance runners. Blood and buccal samples were collected and randomized for analysis of TL by quantitative polymerase chain reaction. Young endurance runners displayed longer telomeres than master athletes (p < .05); however, these differences were not significant when controlled for covariates (p > .05). A positive correlation existed between leukocyte and buccal cell TL in athletes (r = .567, p < .001). In conclusion, young endurance runners possess longer telomeres than master endurance runners and sprinters, a consequence of lower body mass index and visceral fat.

  • Artandi, S.E., & Attardi, L.D. (2005). Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochemical and Biophysical Research Communications, 331, 881890. https://doi.org/10.1016/j.bbrc.2005.03.211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borghini, A., Giardini, G., Tonacci, A., Mastorci, F., Mercuri, A., Mrakic-Sposta, S., Moretti, S., Andreassi, M.G., & Pratali, L. (2015). Chronic and acute effects of endurance training on telomere length. Mutagenesis, 30, 711716. https://doi.org/10.1093/mutage/gev038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, M., Oliveira, T., & Fernandes, R. (2013). Biochemistry of adipose tissue: An endocrine organ. Archives of Medical Science, 9, 191200. https://doi.org/10.5114/aoms.2013.33181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Correia-Melo, C., Hewitt, G., & Passos, J.F. (2014). Telomeres, oxidative stress and inflammatory factors: Partners in cellular senescence? Longevity and Health, 3, 19. https://doi.org/10.1186/2046-2395-3-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dankel, S.J., Loenneke, J.P., & Loprinzi, P.D. (2017). The impact of overweight/obesity duration and physical activity on telomere length: An application of the WATCH paradigm. Obesity Research & Clinical Practice, 11, 247252. https://doi.org/10.1016/j.orcp.2016.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denham, J. (2016). Lack of association between PBMC telomere length and endurance exercise. Journal of Applied Biomedicine, 15, 913. https://doi.org/10.1016/j.jab.2016.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denham, J., Nelson, C.P., O’Brien, B.J., Nankervis, S.A., Denniff, M., Harvey, J.T., Marques, F.Z., Codd, V., Zukowska-Szczechowska, E., Samani, N.J., Tomaszewski, M., & Charchar, F.J. (2013). Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One, 8, Article e69377. https://doi.org/10.1371/journal.pone.0069377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denham, J., O’Brien, B.J., Prestes, P.R., Brown, N.J., & Charchar, F.J. (2015). Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. Journal of Applied Physiology, 120, 148158. https://doi.org/10.1152/japplphysiol.00587.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimauro, I., Scalabrin, M., Fantini, C., Grazioli, E., Beltran Valls, M.R., Mercatelli, N., Parisi, A., Sabatini, S., Di Luigi, L., & Caporossi, D. (2016). Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biology, 10, 3444. https://doi.org/10.1016/j.redox.2016.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellulu, M.S., Patimah, I., Khaza, H., Rahmat, A., Abed, Y., & Sci, A.M. (2016). Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science, 13(4), 851863.

    • Search Google Scholar
    • Export Citation
  • Finnicum, C.T., Dolan, C.V., Willemsen, G., Weber, Z.M., Petersen, J.L., Beck, J.J., Codd, V., Boomsma, D.I., Davies, G.E., & Ehli, E.A. (2017). Relative telomere repeat mass in buccal and leukocyte-derived DNA. PLoS One, 12, 111. https://doi.org/10.1371/journal.pone.0170765

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., Nishizawa, H., Funahashi, T., Shimomura, I., & Shimabukuro, M. (2006). Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circulation, 70, 14371442. https://doi.org/10.1253/circj.70.1437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114, 17521761. https://doi.org/10.1172/JCI21625

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadalla, S., Cawthon, R., Giri, N., Alter, B.P., & Savage, S.A. (2010). Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging, 2, 867874. https://doi.org/10.18632/aging.100235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, B.J., Blount, J.D., Boner, W., Griffiths, K., Metcalfe, N.B., & Monaghan, P. (2012). Telomere length in early life predicts life span. Obstetrical & Gynecological Survey, 67, 283284. https://doi.org/10.1097/OGX.0b013e3182546dd0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernando, B., Gil-Barrachina, M., Tomas-Bort, E., Martinez-Navarro, I., Collado-Boira, E., & Hernando, C. (2020). The effect of long-term ultra-endurance exercise and SOD2 genotype on telomere shortening with age. Journal of Applied Physiology, 129, 873879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, S.E., Shay, J.W., & Wright, W.E. (1996). Refining the telomere-telomerase hypothesis of aging and cancer. Nature Biotechnology, 14, 836839. https://doi.org/10.1038/nbt0796-836

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kadi, F., & Ponsot, E. (2010). The biology of satellite cells and telomeres in human skeletal muscle: Effects of aging and physical activity. Scandinavian Journal of Medicine & Science in Sports, 20, 3948. https://doi.org/10.1111/j.1600-0838.2009.00966.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, K.L., Clark, G., Ghilchick, M., Newbold, R.F., & Mokbel, K. (2003). hTERT mRNA expression correlates with telomerase activity in human breast cancer. European Journal of Surgical Oncology, 29, 321326. https://doi.org/10.1053/ejso.2002.1374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krauss, J., Farzaneh-Far, R., Puterman, E., Na, B., Lin, J., Epel, E., Blackburn, E., & Whooley, M.A. (2011). Physical fitness and telomere length in patients with coronary heart disease: Findings from the heart and soul study. PLoS One 6, 18. https://doi.org/10.1371/journal.pone.0026983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna, B., Shravya Keerthi, G., Kiran Kumar, C., & Reddy, N.M. (2015). Association of leukocyte telomere length with oxidative stress in yoga practitioners. Journal of Clinical and Diagnostic Research, 9, 13. https://doi.org/10.7860/JCDR/2015/13076.5729

    • Search Google Scholar
    • Export Citation
  • Latifovic, L., Peacock, S.D., Massey, T.E., & King, W.D. (2016). The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiology, Biomarkers & Prevention, 25, 374380. https://doi.org/10.1158/1055-9965.EPI-14-1364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi, P.D., & Sng, E. (2016). Mode-specific physical activity and leukocyte telomere length among U.S. adults: Implications of running on cellular aging. Preventive Medicine, 85, 1719. https://doi.org/10.1016/j.ypmed.2016.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathur, S., Ardestani, A., Parker, B., Cappizzi, J., Polk, D., & Thompson, P.D. (2013). Telomere length and cardiorespiratory fitness in marathon runners. Journal of Investigative Medicine, 61, 613615. https://doi.org/10.2310/JIM.0b013e3182814cc2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neidle, S., & Parkinson, G.N. (2003). The structure of telomeric DNA. Current Opinion in Structural Biology, 13, 275283. https://doi.org/10.1016/S0959-440X(03)00072-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nickels, M., Mastana, S., Denniff, M., Codd, V., & Akam, E. (2021). Elite swimmers possess shorter telomeres than recreationally active controls. Gene, 769, 145242. Advanced online publication. https://doi.org/10.1016/j.gene.2020.145242 PubMed ID: 33068677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nickels, M., Mastana, S., Hunter, D., Denniff, M., Codd, V., & Akam, E. (2020). The effect of a 12-week resistance training intervention on leukocyte telomere length. Heliyon, 6, e04151. https://doi.org/10.1016/j.heliyon.2020.e04151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patel, H., Alkhawam, H., Madanieh, R., Shah, N., Kosmas, C.E., & Vittorio, T.J. (2017). Aerobic vs anaerobic exercise training effects on the cardiovascular system. World Journal of Cardiology, 9, 134. https://doi.org/10.4330/wjc.v9.i2.134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rae, D., Vignaud, A., Butler-Browne, G.S., Thornell, L.E., Sinclair-Smith, C., Derman, E.W., Lambert, M.I., & Collins, M. (2010). Skeletal muscle telomere length in healthy, experienced, endurance runners. European Journal of Applied Physiology, 109, 323330. https://doi.org/10.1007/s00421-010-1353-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizvi, S., Raza, S.T., & Mahdi, F. (2015). Telomere length variations in aging and age-related diseases. Current Aging Science, 7, 161167. https://doi.org/10.2174/1874609808666150122153151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosa, T.S., Neves, R.V.P., Deus, L.A., Sousa, C.V., da Silva Aguiar, S., de Souza, M.K., Moraes, M.R., Rosa, É.C.C.C., Andrade, R.V., Korhonen, M.T., & Simões, H.G. (2020). Sprint and endurance training in relation to redox and inflammatory status and biomarkers of aging in master athletes. Nitric Oxide, 102(1), 4251. https://doi.org/10.1016/j.niox.2020.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simoes, H.G., Sousa, C.V., Dos Santos Rosa, T., Da Silva Aguiar, S., Deus, L.A., Rosa, E.C.C.C., Amato, A.A., & Andrade, R.V. (2017). Longer telomere length in elite master sprinters: Relationship to performance and body composition. International Journal of Sports Medicine, 38, 11111116. https://doi.org/10.1055/s-0043-120345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, C.V, Aguiar, S.S., Santos, P.A., Barbosa, L.P., Knechtle, B., Nikolaidis, P.T., Deus, L.A., Sales, M.M., Rosa, E.C.C.C., Rosa, T.S., Lewis, J.E., Andrade, R.V, & Simões, H.G. (2018). Telomere length and redox balance in master endurance runners: The role of nitric oxide. Experimental Gerontology, 117, 113118. https://doi.org/10.1016/j.exger.2018.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starkweather, A. (2014). An integrative review of factors associated with telomere length and implications for biobehavioral research. Nursing Research, 63, 3650. https://doi.org/10.1038/mp.2011.182.doi

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tayrose, G.A., Beutel, B.G., Cardone, D.A., & Sherman, O.H. (2015). The masters athlete: A review of current exercise and treatment recommendations. Sports Health, 7, 270276. https://doi.org/10.1177/1941738114548999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trappe, S. (2001). Master athletes. International Journal of Sport Nutrition, 11, 196207. https://doi.org/10.1123/ijsnem.11.s1.s196

  • Werner, C., Fürster, T., Widmann, T., Pöss, J., Roggia, C., Hanhoun, M., Scharhag, J., Büchner, N., Meyer, T., Kindermann, W., Haendeler, J., Böhm, M., & Laufs, U. (2009). Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation, 120, 24382447. https://doi.org/10.1161/CIRCULATIONAHA.109.861005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, C.M., Hecksteden, A., Morsch, A., Zundler, J., Wegmann, M., Kratzsch, J., Thiery, J., Hohl, M., Bittenbring, J.T., Neumann, F., Böhm, M., Meyer, T., & Laufs, U. (2018). Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. European Heart Journal, 40, 3446. https://doi.org/10.1093/eurheartj/ehy585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willeit, P., Willeit, J., Brandstätter, A., Ehrlenbach, S., Mayr, A., Gasperi, A., Weger, S., Oberhollenzer, F., Reindl, M., Kronenberg, F., & Kiechl, S. (2010). Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 16491656. https://doi.org/10.1161/ATVBAHA.110.205492

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 977 977 442
Full Text Views 17 17 4
PDF Downloads 25 25 4