Unique Characteristics of Quadriceps Muscle Morphology and Function in Older Tennis Players

Click name to view affiliation

Akito Yoshiko Faculty of Liberal Arts and Sciences, Chukyo University, Aichi, Japan

Search for other papers by Akito Yoshiko in
Current site
Google Scholar
PubMed
Close
*
,
Moroe Beppu Japan Hip Joint Foundation, Tokyo, Japan

Search for other papers by Moroe Beppu in
Current site
Google Scholar
PubMed
Close
,
Naoki Chosa Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan

Search for other papers by Naoki Chosa in
Current site
Google Scholar
PubMed
Close
, and
Kohei Watanabe School of Health and Sport Sciences, Chukyo University, Aichi, Japan
School of International Liberal Studies, Chukyo University, Aichi, Japan

Search for other papers by Kohei Watanabe in
Current site
Google Scholar
PubMed
Close
Restricted access

We investigated the quadriceps muscle size and quantitative characteristics in older tennis players. Thirty-eight senior tennis players (70.8 ± 5.3 years) and 38 controls (71.6 ± 5.1 years) were included. To measure the muscle size and quality, we measured muscle thickness in the rectus femoris (RF), vastus lateralis, and vastus intermedius, and muscle echo intensity in the RF and vastus lateralis using B-mode transverse ultrasound, respectively. We measured knee extension peak torque for muscle function. Muscle thickness in the RF, vastus lateralis, and vastus intermedius were significantly larger in tennis players than in controls. Tennis players had a lower echo intensity in RF and a higher knee extension peak torque compared to controls. Stepwise multiple linear regression analysis implied that echo intensity and muscle thickness were predictors of knee extension peak torque. Higher muscle quality contributes to a higher knee extension peak torque in tennis players. Playing tennis may prevent age-related muscle atrophy and maintain muscle quality in older individuals.

  • Collapse
  • Expand
  • Addison, O., Marcus, R.L., LaStayo, P.C., & Ryan, A.S. (2014). Intermuscular fat: A review of the consequences and causes. International Journal of Endocrinology, 2014, Article 309570. https://doi.org/10.1155/2014/309570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akima, H., Hioki, M., Yoshiko, A., Koike, T., Sakakibara, H., Takahashi, H., & Oshida, Y. (2016). Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids. Magnetic Resonance Imaging, 34(4), 397403. https://doi.org/10.1016/j.mri.2015.12.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akima, H., Yoshiko, A., Hioki, M., Kanehira, N., Shimaoka, K., Koike, T., Sakakibara, H., & Oshida, Y. (2015). Skeletal muscle size is a major predictor of intramuscular fat content regardless of age. European Journal of Applied Physiology, 115(8), 16271635. https://doi.org/10.1007/s00421-015-3148-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akima, H., Yoshiko, A., Tomita, A., Ando, R., Saito, A., Ogawa, M., Kondo, S., & Tanaka, N.I. (2017). Relationship between quadriceps echo intensity and functional and morphological characteristics in older men and women. Archives of Gerontology and Geriatrics, 70, 105111. https://doi.org/10.1016/j.archger.2017.01.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlantis, E., Martin, S.A., Haren, M.T., Taylor, A.W., & Wittert, G.A. (2009). Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism, 58(7), 10131022. https://doi.org/10.1016/j.metabol.2009.02.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, H.E., Tedner, B., & Tesch, P.A. (1993). Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiologica Scandinavica, 148(4), 379385. https://doi.org/10.1111/j.1748-1716.1993.tb09573.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadore, E.L., Izquierdo, M., Conceição, M., Radaelli, R., Pinto, R.S., Baroni, B.M., Vaz, M.A., Albertona, C.L., Pinto, S.S., Cunha, G., Bottaro, M., & Kruel, L.F.M. (2012). Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Experimental Gerontology, 47(6), 473478. https://doi.org/10.1016/j.exger.2012.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calbet, J.A., Moysi, J.S., Dorado, C., & Rodríguez, L.P. (1998). Bone mineral content and density in professional tennis players. Calcified Tissue International, 62(6), 491496. https://doi.org/10.1007/s002239900467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chodzko-Zajko, W.J., Proctor, D.N., Fiatarone Singh, M.A., Minson, C.T., Nigg, C.R., Salem, G.J., & Skinner, J.S. (2009). American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 15101530. https://doi.org/10.1249/MSS.0b013e3181a0c95c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corrigan, D., & Bohannon, R.W. (2001). Relationship between knee extension force and stand-up performance in community-dwelling elderly women. Archives of Physical Medicine and Rehabilitation, 82(12), 16661672. https://doi.org/10.1053/apmr.2001.26811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., Schneider, S.M., Sieber, C.C., Topinkova, E., Vandewoude, M., Visser, M., & Zamboni, M. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing, 48(1), 1631. https://doi.org/10.1093/ageing/afy169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demakakos, P., Hamer, M., Stamatakis, E., & Steptoe, A. (2010). Low-intensity physical activity is associated with reduced risk of incident type 2 diabetes in older adults: Evidence from the English Longitudinal Study of Ageing. Diabetologia, 53(9), 18771885. https://doi.org/10.1007/s00125-010-1785-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Gorely, T., Davies, M.J., Gray, L.J., Khunti, K., Wilmot, E.G., Yates, T., & Biddle, S.J. (2012). Association of sedentary behaviour with metabolic syndrome: A meta-analysis. PLoS One, 7(4), Article e34916. https://doi.org/10.1371/journal.pone.0034916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, J., Mendez-Villanueva, A., & Pluim, B.M. (2006). Intensity of tennis match play. British Journal of Sports Medicine, 40(5), 387391. https://doi.org/10.1136/bjsm.2005.023168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, R.J., Kirsner, R.L., & Byrne, E. (1995). Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscular Disorders, 5(5), 415422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumoto, Y., Ikezoe, T., Yamada, Y., Tsukagoshi, R., Nakamura, M., Mori, N., Kimura, M., & Ichihashi, N. (2012). Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. European Journal of Applied Physiology, 112(4), 15191525. https://doi.org/10.1007/s00421-011-2099-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianoudis, J., Bailey, CA., & Daly, R.M. (2015). Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporosis International, 26(2), 571579. https://doi.org/10.1007/s00198-014-2895-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Carlson, C.L., Visser, M., Kelley, D.E., Scherzinger, A., Harris, T.B., Stamm, E., & Newman, A.B. (2001). Attenuation of skeletal muscle and strength in the elderly: The health ABC study. Journal of Applied Physiology, 90(6), 21572165. https://doi.org/10.1152/jappl.2001.90.6.2157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Thaete, F.L., Simoneau, J.A., & Kelley, D.E. (1997). Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes, 46(10), 15791585. https://doi.org/10.2337/diacare.46.10.1579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashida, I., Tanimoto, Y., Takahashi, Y., Kusabiraki, T., & Tamaki, J. (2014). Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS One, 9(11), Article e111810. https://doi.org/10.1371/journal.pone.0111810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S.K., Thompson, M.W., & Adams, R.D. (2000). Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 55(6), B264273. https://doi.org/10.1093/gerona/55.6.b264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Tennis Federation. (2019). Global tennis reports.  Retrieved August 20, 2020, from http://itf.uberflip.com/i/1169625-itf-global-tennis-report-2019-overview/0?

    • Search Google Scholar
    • Export Citation
  • Jetté, M., Sidney, K., & Blümchen, G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical Cardiology, 13(8), 555565. https://doi.org/10.1002/clc.4960130809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mijnarends, D.M., Koster, A., Schols, J.M., Meijers, J.M., Halfens, R.J., Gudnason, V., Eiriksdottir, G., Siggeirsdottir, K., Sigurdsson, S., Jónsson, P.V., Meirelles, O., & Harris, T. (2016). Physical activity and incidence of sarcopenia: The population-based AGES-Reykjavik Study. Age and Ageing, 45(5), 614620. https://doi.org/10.1093/ageing/afw090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., & Narici, M. (2012). Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology, 3, 260. https://doi.org/10.3389/fphys.2012.00260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A.B., Kupelian, V., Visser, M., Simonsick, E.M., Goodpaster, B.H., Kritchevsky, S.B., Tylavsky, F.A., Rubin, S.M., & Harris, T.B. (2006). Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 61(1), 7277. https://doi.org/10.1093/gerona/61.1.72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nomura, K., Eto, M., Ogawa, S., Kojima, T., Iijima, K., Nakamura, T., Araki, A., Ouchi, Y., & Akishita, M. (2020). Association between low muscle mass and metabolic syndrome in elderly Japanese women. PLoS One, 15(12), Article e0243242. https://doi.org/10.1371/journal.pone.0243242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, K., Norton, L., & Sadgrove, D. (2010). Position statement on physical activity and exercise intensity terminology. Journal of Science and Medicine in Sport, 13(5), 496502. https://doi.org/10.1016/j.jsams.2009.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paris, M.T., Bell, K.E., Avrutin, E., & Mourtzakis, M. (2020). Ultrasound image resolution influences analysis of skeletal muscle composition. Clinical Physiology and Functional Imaging, 40(4), 277283. https://doi.org/10.1111/cpf.12636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pluim, B.M., Staal, J.B., Marks, B.L., Miller, S., & Miley, D. (2007). Health benefits of tennis. British Journal of Sports Medicine, 41(11), 760768. https://doi.org/10.1136/bjsm.2006.034967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rech, A., Radaelli, R., Goltz, F.R., da Rosa, L.H., Schneider, C.D., & Pinto, R.S. (2014). Echo intensity is negatively associated with functional capacity in older women. Age, 36(5), 9708. https://doi.org/10.1007/s11357-014-9708-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimers, K., Reimers, C.D., Wagner, S., Paetzke, I., & Pongratz, D.E. (1993). Skeletal muscle sonography: A correlative study of echogenicity and morphology. Journal of Ultrasound in Medicine, 12(2), 7377. https://doi.org/10.7863/jum.1993.12.2.73

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reiner, M., Niermann, C., Jekauc, D., & Woll, A. (2013). Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health, 13, Article 813. https://doi.org/10.1186/1471-2458-13-813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roubenoff, R. (2000). Sarcopenia and its implications for the elderly. European Journal of Clinical Nutrition, 54, S40S47. https://doi.org/10.1038/sj.ejcn.1601024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, E.D., Shea, N.M., Gerstner, G.R., Barnette, T.J., Tweedell, A.J., & Kleinberg, C.R. (2016). The influence of subcutaneous fat on the relationship between body composition and ultrasound-derived muscle quality. Applied Physiology, Nutrition and Metabolism, 41(10), 11041107. https://doi.org/10.1139/apnm-2016-0238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchis-Moysi, J., Idoate, F., Álamo-Arce, D., Calbet, J.A., & Dorado, C. (2017). The core musculature in male prepubescent tennis players and untrained counterparts: A volumetric MRI study. Journal of Sports Science, 35(8), 791797. https://doi.org/10.1080/02640414.2016.1189589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchis-Moysi, J., Idoate, F., Serrano-Sanchez, J.A., Dorado, C., & Calbet, J.A. (2012). Muscle hypertrophy in prepubescent tennis players: A segmentation MRI study. PLoS One, 7(3), Article e33622. https://doi.org/10.1371/journal.pone.0033622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnohr, P., O’Keefe, J.H., Holtermann, A., Lavie, C.J., Lange, P., Jensen, G.B., & Marott, J.L. (2018). Various leisure-time physical activities associated with widely divergent life expectancies: The copenhagen city heart study. Mayo Clinic Proceedings, 93(12), 17751785. https://doi.org/10.1016/j.mayocp.2018.06.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stock, M., & Thompson, B.J. (2020). Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. European Journal of Applied Physiology, 121(2), 369380. https://doi.org/10.1007/s00421-020-04556-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strasser, E.M., Draskovits, T., Praschak, M., Quittan, M., & Graf, A. (2013). Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age, 35(6), 23772388. https://doi.org/10.1007/s11357-013-9517-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, T., Brechat, P.H., Leprêtre, P.M., Kaltenbach, G., Berthel, M., & Lonsdorfer, J. (2009). Health benefits of physical activity in older patients: A review. International Journal of Clinical Practice, 63(2), 303320. https://doi.org/10.1111/j.1742-1241.2008.01957.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wannamethee, S.G., & Atkins, J.L. (2015). Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proceedings of the Nutrition Society, 74(4), 405412. https://doi.org/10.1017/s002966511500169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshiko, A., Beppu, M., Izumida, R., Matsubara, M., Otani, T., Shiratsuchi, H., Takahira, N., Moritani, T., & Watanabe, K. (2020). Long-term assessment of morphological, functional, and quantitative parameters of skeletal muscle in older patients after unilateral total hip arthroplasty. Experimental Gerontology, 137, Article 110971. https://doi.org/10.1016/j.exger.2020.110971

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshiko, A., Kaji, T., Sugiyama, H., Koike, T., Oshida, Y., & Akima, H. (2018). Muscle quality characteristics of muscles in the thigh, upper arm and lower back in elderly men and women. European Journal of Applied Physiology, 118(7), 13851395. https://doi.org/10.1007/s00421-018-3870-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshiko, A., Kaji, T., Sugiyama, H., Koike, T., Oshida, Y., & Akima, H. (2019). Twenty-four months’ resistance and endurance training improves muscle size and physical functions but not muscle quality in older adults requiring long-term care. Journal of Nutrition, Health and Aging, 23(6), 564570. https://doi.org/10.1007/s12603-019-1208-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshiko, A., Natsume, Y., Makino, T., Hayashi, T., Umegaki, H., Yoshida, Y., Cheng, X.W., Kuzuya, M., Ishida, K., Koike, T., Oshida, Y., & Akima, H. (2019). Higher and lower muscle echo intensity in elderly individuals is distinguished by muscle size, physical performance and daily physical activity. Ultrasound in Medicine & Biology, 45(9), 23722380. https://doi.org/10.1016/j.ultrasmedbio.2019.05.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, H.J., Jenkins, N.T., Zhao, Q., & McCully, K.K. (2015). Measurement of intramuscular fat by muscle echo intensity. Muscle and Nerve, 52(6), 963971. https://doi.org/10.1002/mus.24656

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2580 527 52
Full Text Views 86 60 0
PDF Downloads 45 13 0