Concurrent Validity of the Garmin Vivofit®4 to Accurately Record Step Count in Older Adults in Challenging Environments

in Journal of Aging and Physical Activity
View More View Less
  • 1 School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
  • | 2 Logan Hospital, Metro South Health Service, Meadowbrook, QLD, Australia
  • | 3 Sonova AG, Stafa, Switzerland
Restricted access

There is little evidence of the concurrent validity of commercially available wrist-worn long battery life activity monitors to measure steps in older adults at slow speeds and with real-world challenges. Forty adults aged over 60 years performed a treadmill protocol at four speeds, a 50-m indoor circuit, and a 200-m outdoor circuit with environmental challenges while wearing a Garmin Vivofit®4, the activPAL3™, and a chest-worn camera angled at the feet. The Garmin Vivofit®4 showed high intraclass correlation coefficients2,1 (.98–.99) and low absolute percentage error rates (<2%) at the fastest treadmill speeds and the outdoor circuit. Step counts were underestimated at the slowest treadmill speed and the indoor circuit. The Garmin Vivofit®4 is accurate for older adults at higher walking speeds and during outdoor walking. However, it underestimates steps at slow speeds and when walking indoors with postural transitions.

  • Abadleh, A., Al-Hawari, E., Alkafaween, E.A., & Al-Sawalqah, H. (2017). Step detection algorithm for accurate distance estimation using dynamic step length. In R. Bilof  (Ed.), IEEE international conference on mobile data management (MDM) (pp. 324327). Institute of Electrical and Electronic Engineers.

    • Search Google Scholar
    • Export Citation
  • Alatorre-Cruz, G.C., Sanchez-Lopez, J., Silva-Pereyra, J., & Fernández, T. (2020). Effects of incidental physical activity on morphosyntactic processing in aging. PLoS One, 15(9), Article e0239727. https://doi.org/10.1371/journal.pone.0239727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almarwani, M., Vanswearingen, J.M., Perera, S., Sparto, P.J., & Brach, J.S. (2016). Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Archives of Gerontology and Geriatrics, 66, 5461. https://doi.org/10.1016/j.archger.2016.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altman, D.G., & Bland, J.M. (1983). Measurement in medicine: The analysis of method comparison studies. Journal of the Royal Statistical Society: Series D (The Statistician), 32(3), 307317. https://doi.org/10.2307/2987937

    • Search Google Scholar
    • Export Citation
  • Anat, M., Hagar, B.-E., Tomer, N., Avner, T., Agnese, P., & Meir, P. (2015). Effects of aging on arm swing during gait: The role of gait speed and dual tasking. PLoS One, 10(8), Article e0136043. https://doi.org/10.1371/journal.pone.0136043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D., Ainsworth, B., Leggett, S.R., Mathien, C., Main, J., & Hunter, D. (1996). Accuracy of five electronic pedometers for measuring distance walked. Medicine & Science in Sports & Exercise, 28(8), 10711077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohannon, R.W., & Williams Andrews, A. (2011). Normal walking speed: A descriptive meta-analysis. Physiotherapy, 97(3), 182189. https://doi.org/10.1016/j.physio.2010.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busse, M.E., Van Deursen, R.W., & Wiles, C.M. (2009). Real-life step and activity measurement: Reliability and validity. Journal of Medical Engineering & Technology, 33(1), 3341. https://doi.org/10.1080/03091900701682606

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callahan, M.C., Unverzagt, W.F., Hui, L.S., Perkins, J.A., & Hendrie, C.H. (2002). Six-item screener to identify cognitive impairment among potential subjects for clinical research. Medical Care, 40(9), 771781. https://doi.org/10.1097/01.mlr.0000024610.33213.c8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, M.-C., & Wang, M.-J. (2006). The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking. Gait & Posture, 25(3), 385392. https://doi.org/10.1016/j.gaitpost.2006.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, M.-J., & Wang, M.-J.J. (2009). The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait & Posture, 31(1), 131135. https://doi.org/10.1016/j.gaitpost.2009.09.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clegg, A.P., Barber, S.E., Young, J.B., Forster, A., & Iliffe, S.J. (2012). Do home-based exercise interventions improve outcomes for frail older people? Findings from a systematic review. Reviews in Clinical Gerontology, 22(1), 6878. https://doi.org/10.1017/S0959259811000165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinger, M.K., Oman, R.F., Taylor, E.L., Vesely, S.K., & Able, J. (2004). Stability and convergent validity of the Physical Activity Scale for the Elderly (PASE). Journal of Sports Medicine and Physical Fitness, 44(2), 186192.

    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Winkler, E.A.H., Bodicoat, D.H., Yates, T., Davies, M., & Dunstan, D. (2017). Considerations when using the activPAL monitor in field-based research with adult populations. Journal of Sport and Health Science, 6(2), 162178. https://doi.org/10.1016/j.jshs.2016.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egerton, T., & Brauer, S.G. (2009). Temporal characteristics of habitual physical activity periods among older adults. Journal of Physical Activity & Health, 6(5), 644650. https://doi.org/10.1123/jpah.6.5.644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K., Goto, M., & Furberg, R. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. The International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. https://doi.org/10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fokkema, M.T., Kooiman, P.T.J., Krijnen, P.W., Van Der Schans, P.C., & De Groot, P.M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine & Science in Sports & Exercise, 49(4), 793800. https://doi.org/10.1249/MSS.0000000000001146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortune, E., Lugade, V., Morrow, M., & Kaufman, K. (2014). Validity of using tri-axial accelerometers to measure human movement—Part II: Step counts at a wide range of gait velocities. Medical Engineering & Physics, 36(6), 659669. https://doi.org/10.1016/j.medengphy.2014.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, P.M., Dall, P.M., Mitchell, S.L., & Granat, M.H. (2008). Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. Journal of Aging and Physical Activity, 16(2), 201214. https://doi.org/10.1123/japa.16.2.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höchsmann, C., Knaier, R., Eymann, J., Hintermann, J., Infanger, D., & Schmidt-Trucksäss, A. (2018). Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scandinavian Journal of Medicine & Science in Sports, 28(7), 18181827. https://doi.org/10.1111/sms.13074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollman, J.H., McDade, E.M., & Petersen, R.C. (2011). Normative spatiotemporal gait parameters in older adults. Gait & Posture, 34(1), 111118. https://doi.org/10.1016/j.gaitpost.2011.03.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollman, J.H., Watkins, M.K., Imhoff, A.C., Braun, C.E., Akervik, K.A., & Ness, D.K. (2016). A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait & Posture, 43, 204209. https://doi.org/10.1016/j.gaitpost.2015.09.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., & Choudhury, A. (2020). Comparison of older and younger adults’ attitudes toward the adoption and use of activity trackers. JMIR mHealth and uHealth, 8(10), Article e18312. https://doi.org/10.2196/18312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A.C., Haskell, W.L., Taylor, C.B., Kraemer, H.C., & DeBusk, R.F. (1991). Group- vs home-based exercise training in healthy older men and women. A community-based clinical trial. JAMA, 266(11), 15351542. https://doi.org/10.1001/jama.1991.03470110081037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuth, N.D., Chen, K.M., & Schrack, J.A. (2016). Objectively measured physical activity varies by task and accelerometer location in younger and older adults: 3789 Board #228 June 4, 9: 30 AM–11: 00 AM. Medicine & Science in Sports & Exercise, 48, 1061. https://doi.org/10.1249/01.mss.0000488192.95209.a5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Masurier, C.G., Lee, M.S., & Tudor-Locke, M.C. (2004). Motion sensor accuracy under controlled and free-living conditions. Medicine & Science in Sports & Exercise, 36(5), 905910. https://doi.org/10.1249/01.MSS.0000126777.50188.73

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddocks, M., Petrou, A., Skipper, L., & Wilcock, A. (2010). Validity of three accelerometers during treadmill walking and motor vehicle travel. British Journal of Sports Medicine, 44(8), 606. https://doi.org/10.1136/bjsm.2008.051128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahendran, N., Kuys, S.S., Downie, E., Ng, P., & Brauer, S.G. (2016). Are accelerometers and GPS devices valid, reliable and feasible tools for measurement of community ambulation after stroke? Brain Impairment, 17(2), 151161. https://doi.org/10.1017/BrImp.2016.13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirelman, A., Bernad-Elazari, H., Nobel, T., Thaler, A., Peruzzi, A., Plotnik, M., Giladi, N., & Hausdorff, J.M. (2015). Effects of aging on arm swing during gait: The role of gait speed and dual tasking. PLoS One, 10(8), Article e0136043. https://doi.org/10.1371/journal.pone.0136043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagano, H., James, L., Sparrow, W.A., & Begg, R.K. (2014). Effects of walking-induced fatigue on gait function and tripping risks in older adults. Journal of NeuroEngineering and Rehabilitation, 11(1), 155. https://doi.org/10.1186/1743-0003-11-155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patla, A.E., & Shumway-Cook, A. (1999). Dimensions of mobility: Defining the complexity and difficulty associated with community mobility. Journal of Aging and Physical Activity, 7(1), 719. https://doi.org/10.1123/japa.7.1.7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, L., & Myers, A. (1995). The Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 50(1), M28M34. https://doi.org/10.1093/gerona/50A.1.M28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rankin, G., & Stokes, M. (1998). Reliability of assessment tools in rehabilitation: An illustration of appropriate statistical analyses. Clinical Rehabilitation, 12(3), 187199. https://doi.org/10.1191/026921598672178340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, C.G., Grant, P.M., Tigbe, W.W., & Granat, M.H. (2006). The validity and reliability of a novel activity monitor as a measure of walking. British Journal of Sports Medicine, 40(9), 779. https://doi.org/10.1136/bjsm.2006.027276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Lopez, J., Silva-Pereyra, J., Fernández, T., Alatorre-Cruz, G.C., Castro-Chavira, S.A., González-López, M., & Sánchez-Moguel, S.M. (2018). High levels of incidental physical activity are positively associated with cognition and EEG activity in aging. PLoS One, 13(1), Article e0191561. https://doi.org/10.1371/journal.pone.0191561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C.A., Baudendistel, L.S., Lipat, L.A., White, J.T., & Hass, J.C. (2019). Differences in indoor, outdoor, and treadmill walking in healthy young adults. Medicine & Science in Sports & Exercise, 51(6, Suppl.), 700. https://doi.org/10.1249/01.mss.0000562584.12900.32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, A., Colvin, B., & Gammack, J.K. (2011). Pedometer use increases daily steps and functional status in older adults. Journal of the American Medical Directors Association, 12(8), 590594. https://doi.org/10.1016/j.jamda.2010.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, D. (2014). Physical activity is medicine for older adults. Postgraduate Medical Journal, 90(1059), 26. https://doi.org/10.1136/postgradmedj-2012-131366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O’Flynn, B. (2019). Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS One, 14(5), Article e0216891. https://doi.org/10.1371/journal.pone.0216891

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinden, V.J.A., van Der Geest, J.N., Hoogendam, Y.Y., Hofman, A., Breteler, M.M.B., & Ikram, M.A. (2013). Gait patterns in a community-dwelling population aged 50 years and older. Gait & Posture, 37(4), 500505. https://doi.org/10.1016/j.gaitpost.2012.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Ma, Y., Hou, B.Y., & Lam, W.-K. (2017). Influence of gait speeds on contact forces of lower limbs. Journal of Healthcare Engineering, 2017, Article 6375976. https://doi.org/10.1155/2017/6375976

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, K., Carlson, S., Gunn, J., Galuska, D., O’Connor, A., & Greenlund, K. (2016). Physical inactivity among adults aged 50 years and older—United States, 2014. Morbidity and Mortality Weekly Report, 65(36), 954958. https://doi.org/10.15585/mmwr.mm6536a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weir, P.J. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, 19(1), 231240. https://doi.org/10.1519/15184.1

    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2011). Global recommendations on physical activity for health in adults 65 years and above. WHO Press.

  • World Health Organization. (2016). Global health observatory data, prevalence of insufficient physical activity. WHO Press.

All Time Past Year Past 30 Days
Abstract Views 1217 1217 171
Full Text Views 40 40 16
PDF Downloads 60 60 21