Relationship Between Dual-Energy X-Ray Absorptiometry, Ultrasonography, and Anthropometry Methods to Estimate Muscle Mass and Muscle Quality in Older Adults

in Journal of Aging and Physical Activity

Click name to view affiliation

Márcio Beck SchemesPost Graduate Program in Human Movement Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Márcio Beck Schemes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3850-623X*
,
Simone de Azevedo BachPost Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil

Search for other papers by Simone de Azevedo Bach in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9160-4795
,
Carlos Leonardo Figueiredo MachadoPost Graduate Program in Human Movement Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Carlos Leonardo Figueiredo Machado in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0704-4845
,
Rodrigo Rabuski NeskePost Graduate Program in Human Movement Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Rodrigo Rabuski Neske in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4983-0374
,
Cláudia Dornelles SchneiderPost Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil

Search for other papers by Cláudia Dornelles Schneider in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9649-0643
, and
Ronei Silveira PintoPost Graduate Program in Human Movement Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Search for other papers by Ronei Silveira Pinto in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5827-5723
Restricted access

Decreased muscle quality (MQ) may explain functional capacity impairments during aging. Thus, it is essential to verify the interaction between MQ and functional capacity in older adults. We investigated the relationship between MQ and functional capacity in older adults (n = 34; 66.3 ± 4.6 year). MQ was estimated by maximum strength of knee extensors normalized to thigh muscle mass. Maximum strength was assessed on an isokinetic dynamometer (peak torque), while dual-energy X-ray absorptiometry (DXA), ultrasonography, and anthropometry were used to determine thigh muscle mass. Functional capacity was verified by 30-s sit to stand and timed up and go tests. Significant correlations were found between MQ assessed by DXA with 30-s sit to stand (r = .35; p < .05) and timed up and go (r = −.47; p < .05), and MQ assessed by anthropometry with timed up and go (r = −.41; p < .05), but not between MQ assessed by ultrasonography with functional capacity (p > .05). No significant relationship between muscle mass with functional capacity was observed. Thus, MQ assessed by DXA and MQ assessed by anthropometry may partially explain functional capacity in older adults. Interestingly, muscle mass alone did not explain performance in functional tests in this population.

  • Collapse
  • Expand
  • Abe, T., DeHoyos, D.V., Pollock, M.L., & Garzarella, L. (2000). Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European Journal of Applied Physiology and Occupational Physiology, 81(3), 174180. https://doi.org/10.1007/s004210050027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abe, T., Thiebaud, R.S., Loenneke, J.P., & Young, K.C. (2015). Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults. Age, 37(6), 114. https://doi.org/10.1007/s11357-015-9853-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bach, S., de, A., Radaelli, R., Schemes, M.B., Neske, R., Garbelotto, C., de, A., Roschel, H., Silveira Pinto, R., & Dornelles Schneider, C. (2022). Can supplemental protein to low-protein containing meals superimpose on resistance-training muscle adaptations in older adults? A randomized clinical trial. Experimental Gerontology, 162, 111760. https://doi.org/10.1016/j.exger.2022.111760

    • Search Google Scholar
    • Export Citation
  • Barbat-Artigas, S., Rolland, Y., Zamboni, M., & Aubertin-Leheudre, M. (2012). How to assess functional status: A new muscle quality index. Journal of Nutrition, Health and Aging, 16(1), 6777. https://doi.org/10.1007/s12603-012-0004-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilsborough, J.C., Greenway, K.G., Opar, D.A., Livingstone, S.G., Cordy, J.T., Bird, S.R., & Coutts, A.J. (2015). Comparison of antrhopometry, upper-body strength and lower-body and characteristics in different levels of Australian football players. Journal of Strength and Conditioning Research, 29(3), 826834. https://doi.org/10.1519/JSC.0000000000000682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobbert, M.F. (2001). Dependence of human squat jump performance on the series elastic compliance of the triceps surae: A simulation study. Journal of Experimental Biology, 204(3), 533542. https://doi.org/10.1242/jeb.204.3.533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolanowski, M., & Nilsson, B.E. (2001). Assessment of human body composition using dual-energy x-ray absorptiometry and bioelectrical impedance analysis. Medical Science Monitor, 7(5), 10291033.

    • Search Google Scholar
    • Export Citation
  • Cameron, J., McPhee, J.S., Jones, D.A., & Degens, H. (2020). Five-year longitudinal changes in thigh muscle mass of septuagenarian men and women assessed with DXA and MRI. Aging Clinical and Experimental Research, 32(4), 617624. https://doi.org/10.1007/s40520-019-01248-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, B.C., & Manini, T.M. (2008). Sarcopenia ≠ dynapenia. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 63(8), 829834. https://doi.org/10.1093/gerona/63.8.829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Set correlation and contingency tables. Applied Psychological Measurement, 12(4), 425434. https://doi.org/10.1177/014662168801200410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández Vieitez, J.A., Wilson, L.W., Alberto, J., & Cuesta, J.A. Á. (2001). Validez del método de Rolland-Cachera en la estimación de las áreas musculares del muslo y la pierna. Revista Cubana de Alimentación y Nutrición, 15(2), 109114.

    • Search Google Scholar
    • Export Citation
  • Fragala, M.S., Fukuda, D.H., Stout, J.R., Townsend, J.R., Emerson, N.S., Boone, C.H., Beyer, K.S., Oliveira, L.P., & Hoffman, J.R. (2014). Muscle quality index improves with resistance exercise training in older adults. Experimental Gerontology, 53, 16. https://doi.org/10.1016/j.exger.2014.01.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisancho, A.R. (1981). New norms of upper limb fat and muscle areas for assessment of nutritional status. American Journal of Clinical Nutrition, 34(11), 25402545. https://doi.org/10.1093/ajcn/34.11.2540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Park, S.W., Harris, T.B., Kritchevsky, S.B., Nevitt, M., Schwartz, A.V., Simonsick, E.M., Tylavsky, F.A., Visser, M., & Newman, A.B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. The Journal of Gerontology, Series A Biological Sciences and Medical Sciences, 61(10), 10591064. https://doi.org/10.1093/gerona/61.10.1059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, S.B., Gonzalez, M.C., Lu, J., Jia, G., & Zheng, J. (2015). Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. Proceedings of the Nutrition Society, 74(4), 112. https://doi.org/10.1017/S0029665115000129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, S.B., Smith, R., Aulet, M., Bensen, B., Lichtman, S., Wang, J., & Pierson, R.N. (1990). Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. American Journal of Clinical Nutrition, 52(2), 214218. https://doi.org/10.1093/ajcn/52.2.214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korhonen, M.T., Mero, A.A., AlIn, M., Sipila, S., Hakkinen, K., Liikavainio, T., Viitasalo, J.T., Haverinen, M.T., & Suominen, H. (2009). Biomechanical and skeletal muscle determinants of maximum running speed with aging. Medicine & Science in Sports & Exercise, 41(4), 844856. https://doi.org/10.1249/MSS.0b013e3181998366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumagai, K., Abe, T., Brechue, W.F., Ryushi, T., Takano, S., & Mizuno, M. (2000). Sprint performance is related to muscle fascicle length in male 100-m sprinters. Journal of Applied Physiology, 88(3), 811816. https://doi.org/10.1152/jappl.2000.88.3.811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., Pinto, M.D., & Pinto, R.S. (2019). Does rest time before ultrasonography imaging affect quadriceps femoris muscle thickness, cross-sectional area and echo intensity measurements? Ultrasound in Medicine and Biology, 45(2), 612616. https://doi.org/10.1016/j.ultrasmedbio.2018.10.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maffiuletti, N.A., Aagaard, P., Blazevich, A.J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: Physiological and methodological considerations. European Journal of Applied Physiology, 116(6), 10911116. https://doi.org/10.1007/s00421-016-3346-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A.B., Kupelian, V., Visser, M., Simonsick, E.M., Goodpaster, B.H., Kritchevsky, S.B., Tylavsky, F.A., Rubin, S.M., & Harris, T.B. (2006). Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Series A, Biological sciences and medical sciences, 61(1), 7277. https://doi.org/10.1093/gerona/61.1.72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perini, T.A., Oliveira, G.L, Ornellas, J.S., & Oliveira, F.P. (2005). Antropometria - cálculo de erro da medida. Revista Brasileira de Medicina Do Esporte, 11(1), 8185. https://doi.org/10.1590/S1517-86922005000100009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, R.S., Correa, C.S., Radaelli, R., Cadore, E.L., Brown, L.E., & Bottaro, M. (2014). Short-term strength training improves muscle quality and functional capacity of elderly women. Age, 36(1), 365372. https://doi.org/10.1007/s11357-013-9567-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radaelli, R., Brusco, C.M., Lopez, P., Rech, A., Machado, C.L.F., Grazioli, R., Müller, D.C., Tufano, J.J., Cadore, E.L., & Pinto, R.S. (2019). Muscle quality and functionality in older women improve similarly with muscle power training using one or three sets. Experimental Gerontology, 128, 17. https://doi.org/10.1016/j.exger.2019.110745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahaly, R., Vandewalle, H., Driss, T., & Monod, H. (2001). Maximal voluntary force and rate of force development in humans—Importance of instruction. European Journal of Applied Physiology, 85(3–4), 345350. https://doi.org/10.1007/s004210100451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanada, K., Kearns, C.F., Midorikawa, T., & Abe, T. (2006). Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. European Journal of Applied Physiology, 96(1), 2431. https://doi.org/10.1007/s00421-005-0061-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takai, Y., Ohta, M., Akagi, R., Kato, E., Wakahara, T., Kawakami, Y., Fukunaga, T., & Kanehisa, H. (2013). Validity of ultrasound muscle thickness measurements for predicting leg skeletal muscle mass in healthy Japanese middle-aged and older individuals. Journal of Physiological Anthropology, 32(12), 15. https://doi.org/10.1186/1880-6805-32-12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiebaud, R.S., Abe, T., Loenneke, J.P., Fujita, E., & Akamine, T. (2019). Body fat percentage assessment by ultrasound subcutaneous fat thickness measurements in middle-aged and older adults. Clinical Nutrition, 38(6), 26592667. https://doi.org/10.1016/j.clnu.2018.11.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracy, B.L., Ivey, F.M., Hurlbut, D., Martel, G.F., Lemmer, J.T., Siegel, E.L., Metter, E.J., Fozard, J.L., Fleg, J.L., & Hurley, B.F. (1999). Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. Journal of Applied Physiology, 86(1), 195201. https://doi.org/10.1152/jappl.1999.86.1.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Hu, Y., & Tian, G. (2018). Ultrasound measurements of gastrocnemius muscle thickness in older people with sarcopenia. Clinical Interventions in Aging, 13, 21932199. https://doi.org/10.2147/CIA.S179445

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, E.N., Rech, A., Minozzo, F., Radaelli, R., Botton, C.E., & Pinto, R.S. (2014). Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age, 36(3), 11131122. https://doi.org/10.1007/s11357-014-9625-4

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1544 1289 26
Full Text Views 38 34 0
PDF Downloads 55 50 0