Clustering of Physical Activity and Sedentary Behavior Associated to Risk for Metabolic Syndrome in Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $189.00

This study aimed to investigate the clustering patterns of physical activity, sedentary time (ST), and breaks in ST, and the association between the identified clusters at risk for metabolic syndrome associated with obesity in older adults. Participants included 212 users of community health centers in Brazil. A questionnaire about sociodemographic characteristics was used to describe the sample, and physical activity, ST, and breaks in ST were evaluated using accelerometers. Waist circumference was measured as an indicator of the risk for metabolic syndrome. A two-step cluster analysis and logistic regression analysis were conducted. The following four clusters were identified: sitters (37.7%), inactive (28.3%), active (25.5%), and all-day sitters/lightly active (8.5%). Participants in the active cluster were 60% less likely to be at risk for metabolic syndrome. This study may contribute to a comprehensive understanding of which older adult groups need more attention in the context of community health centers.

The authors are with the Federal University of Santa Catarina, Florianópolis, Brazil.

Manta (sofiawolker@gmail.com) is corresponding author.
Journal of Aging and Physical Activity
Article Sections
References
  • AttwoodS.van SluijsE. & SuttonS. (2016). Exploring equity in primarycare-based physical activity interventions using PROGRESS-Plus: A systematic review and evidence synthesis. International Journal of Behavioral Nutrition and Physical Activity 13(60)112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrocklebankL.A.FalconerC.L.PageA.S.PerryR. & CooperA.R. (2015). Accelerometer-measured sedentary time and cardiometabolic biomarkers: A systematic review. Preventive Medicine 7692102. PubMed ID: 25913420 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrownW.J.McLaughlinD.LeungJ.McCaulK.AFlickerL.AlmeidaO.P. . . . DobsonA.J. (2012). Physical activity and all-cause mortality in older women and men. British Journal of Sports Medicine 46(9) 664668. PubMed ID: 22219216 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChanC.W. & LeungS.F. (2015). Lifestyle health behaviors of Hong Kong Chinese: Results of a cluster analysis. Asia-Pacific Journal of Public Health 27(3) 293302. PubMed ID: 25296668 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChastinS.F.EgertonT.LeaskC. & StamatakisE. (2015). Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity 2318001810. PubMed ID: 26308477 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChauJ.Y.GrunseitA.C.CheyT.StamatakisE.BrownW.J.MatthewsC.E. . . . van der PloegH.P. (2013). Daily sitting time and all-cause mortality: A meta-analysis. PLoS ONE 8(11) 80000. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChoiL.LiuZ.MatthewsC.E. & BuchowskiM.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise 43(2) 357364. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del DucaG.F.GarciaL.M.da SilvaS.G.da SilvaS.K.OliveiraE.S.BarrosM.V. & NahasM.V. (2015). Clustering of physical inactivity in leisure, work, commuting, and household domains: Data from 47,477 industrial workers in Brazil. Journal of Physical Activity & Health 1212641271. PubMed ID: 25494097 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Pozo-CruzB.MañasA.Martın-GarciaM.PuyaltoJ.M.Garcıa-GarciaF.J.Rodriguez-MañasL. & AraI. (2017). Frailty is associated with objectively assessed sedentary behaviour patterns in older adults: Evidence from the Toledo Study for Healthy Aging (TSHA). PLoS ONE 1119.

    • Search Google Scholar
    • Export Citation
  • de OliveiraA.CocateP.G.HermsdorffH.H.M.BressanJ.de SilvaM.F.RodriguesJ.A. & NataliA.J. (2014). Waist circumference risk for metabolic syndrome in older adults measures: Cutoff analyses to detect obesity and cardiometabolic risk factors in a Southeast Brazilian middle-aged men population—A cross-sectional study. Lipids in Health and Disease 13(141) 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de RezendeL.F.M.Rey-LópezJ.P.MatsudoV.K.R. & do Carmo LuizO. (2014). Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 14333. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da SilvaV.D.TribessS.MeneguciJ.SasakiJ.E.SantosD.A.T.CarneiroJ.A.O. & Virtuoso JúniorJ.S. (2018). Time spent in sedentary behaviour as discriminant criterion for frailty in older adults. International Journal of Environmental Research and Public Health 15(7) E1336. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EdwardsonC.L.GoroleyT.DaviesM.J.GrayL.J.KhuntiK.WilmotE.G. . . . BiddleS.J. (2012). Association of sedentary behaviour with metabolic syndrome: A meta-analysis. PLoS ONE 7(4) e34916. PubMed ID: 22514690 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EkelundU.JoahannessenJ.S.BrownW.J.FagerlandM.W.OwenN.PowellK.E. . . . Lancet Sedentary Behaviour Working Group. (2016). Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet 388(10051) 13021310. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarringtonD.M.EdwardsonC.L.HensonJ.KhuntiK.YatesT. & DaviesM.J. (2016). Moderate to vigorous physical activity, not sedentary time, is associated with total and regional adiposity in a sample of UK adults at risk of type 2 diabetes. Physiological Measurement 3718621871. PubMed ID: 27654326 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarveyJ.A.ChastinS.F. & SkeltonD.A. (2013). Prevalence of sedentary behavior in older adults: A systematic review. International Journal of Environmental Research and Public Health 1066456661. PubMed ID: 24317382 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HealyG.N.DunstanD.W.SalmonJ.CerinE.ShawJ.E.ZimmetP.Z. & OwenN. (2008). Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care 31661666. PubMed ID: 18252901 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ImE.O.KoY.CheeE.CheeW. & MaoJ.J. (2016). Clusters of midlife women by physical activity and their racial/ethnic differences. Menopause 24(4) 417425. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JordãoL.M.R.MaltaD.C. & FreireM.D.C.M. (2017). Clustering patterns of oral and general health-risk behaviours in Brazilian adolescents: Findings from a national survey. Community Dentistry and Oral Epidemiology 46(2) 194202. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaiaE.G.MendesL.L.PimentaA.M.LevyR.B. & ClaroR.M. (2018). Cluster of risk and protective factors for obesity among Brazilian adolescents. International Journal of Public Health 63(4) 481490. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ManiniT.M.CarrL.J.KingA.C.MarshallS.RobinsonT.N. & RejeskiW.J. (2015). Interventions to reduce sedentary behavior. Medicine & Science in Sports & Exercise 47(6) 13061310. PubMed ID: 25222818 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MatiasT.S.SilvaK.S.SilvaJ.A.D.MelloG.T. & SalmonJ. (2018). Clustering of diet, physical activity and sedentary behavior among Brazilian adolescents in the national school-based health survey (PeNSE 2015). BMC Public Health 18(1) 1283. PubMed ID: 30463537 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MesquitaR.SpinaG.PittaF.Donaire-GonzalezD.DeeringB.M.PatelM.S. . . . SpruitM.A. (2017). Physical activity patterns and clusters in 1001 patients with COPD. Chronic Respiratory Disease 14(3) 256269. PubMed ID: 28774199 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoonJ-Y.WangT.SoferT.NorthK.E.IsasiC.R.CaiJ. . . . QiQ. (2017). Objectively measured physical activity, sedentary behavior, and genetic predisposition to obesity in U.S. Hispanics/Latinos: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes 66(12) 30013012. PubMed ID: 28986399 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorrisL.J.D’EsteC.Sargent-CoxK. & AnsteyK.J. (2016). Concurrent lifestyle risk factors: Clusters and determinants in an Australian sample. Preventive Medicine 8415. PubMed ID: 26740345 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NilssonA.Wahlin-LarssonB. & KadiF. (2017). Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women. PLoS ONE 12(4) e0175496. PubMed ID: 28388679 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NobleN.PaulC.TuronH. & OldmeadowC. (2015). Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical Activity (‘SNAP’) health risk factors. Preventive Medicine 811641. PubMed ID: 26190368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OmorouA.Y.CosteJ.EscalonH. & VuilleminA. (2015). Patterns of physical activity and sedentary behaviour in the general population in France: Cluster analysis with personal and socioeconomic correlates. Journal of Public Health 38(3) 483492. PubMed ID: 26071536 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SardinhaL.B.EkelundU.dos SantosL.CyrinoE.S.SilvaA.M. & SantosD.A. (2015). Breaking-up sedentary time is associated with impairment in activities of daily living. Experimental Gerontology 725762. PubMed ID: 26385738 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StewartA.Marfell-JonesM.OldsT. & RidderH. (2011). International standards for anthropometric assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry.

    • Search Google Scholar
    • Export Citation
  • TroianoR.P.BerriganD.DoddK.W.MasseL.C.TilertT. & McDowellM. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise 40(1) 181188. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WirthK.KlenkJ.BrefkaS.DallmeierD.FaehlingK.Roqué I FigulsM. . . . SITLESS Consortium. (2017). Biomarkers associated with sedentary behaviour in older adults: A systematic review. Ageing Research Reviews 3587111. PubMed ID: 28025174 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2015). World reporting on aging and health. Geneva, Switzerland: Author.

  • ZwolinskyS.McKennaJ.PringleA.WiddopP.GriffithsC.MellisM. . . . CollinsP. (2016). Physical activity and sedentary behavior clustering: Segmentation to optimize active lifestyles. Journal of Physical Activity & Health 13921928. PubMed ID: 27171277 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 154 154 62
Full Text Views 9 9 3
PDF Downloads 6 6 2
Altmetric Badge
PubMed
Google Scholar