Increasing the Propulsive Demands of Walking to Their Maximum Elucidates Functionally Limiting Impairments in Older Adult Gait

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $189.00

The authors elucidated functional limitations in older adult gait by increasing horizontal impeding forces and walking speed to their maximums compared with dynamometry and with data from their young counterparts. Specifically, the authors investigated which determinants of push-off intensity represent genuine functionally limiting impairments in older adult gait versus biomechanical changes that do not directly limit walking performance. They found that older adults walked at their preferred speed with hallmark deficits in push-off intensity. These subjects were fully capable of overcoming deficits in propulsive ground reaction force, trailing limb positive work, trailing leg and hip extension, and ankle power generation when the propulsive demands of walking were increased to maximum. Of the outcomes tested, age-related deficits in ankle moment emerged as the lone genuine functionally limiting impairment in older adults. Distinguishing genuine functional limitations from age-related differences masquerading as limitations represents a critical step toward the development and prescription of effective interventions.

The authors are with the Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.

Franz (jrfranz@email.unc.edu) is corresponding author.
Journal of Aging and Physical Activity
Article Sections
References
  • AndersonD.E. & MadiganM.L. (2014). Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. Journal of Biomechanics 47(5) 11041109. PubMed ID: 24461576 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArnoldE.M.WardS.R.LieberR.L. & DelpS.L. (2010). A model of the lower limb for analysis of human movement. Annals of Biomedical Engineering 38(2) 269279. PubMed ID: 19957039 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaumgartnerR.N.KoehlerK.M.GallagherD.RomeroL.HeymsfieldS.B.RossR.R.LindemanR.D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology 147(8) 755763. PubMed ID: 9554417 doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeijersbergenC.M.GranacherU.GablerM.DeVitaP. & HortobagyiT. (2017). Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity: The Potsdam Gait Study (POGS). Gait & Posture 52338344. PubMed ID: 28043055 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeijersbergenC.M.GranacherU.VandervoortA.A.DeVitaP. & HortobagyiT. (2013). The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Research Reviews 12(2) 618627. PubMed ID: 23501431 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrowneM.G. & FranzJ.R. (2017). Does dynamic stability govern propulsive force generation in human walking? Royal Society Open Science 4(11) 171673. PubMed ID: 29291129 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrowneM.G. & FranzJ.R. (2018). More push from your push-off: Joint-level modifications to modulate propulsive forces in old age. PLoS ONE 13(8) e0201407. PubMed ID: 30089143 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CofreL.E.LythgoN.MorganD. & GaleaM.P. (2011). Aging modifies joint power and work when gait speeds are matched. Gait & Posture 33(3) 484489. PubMed ID: 21256026 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ConwayK.A.BissetteR.G. & FranzJ.R. (2018). The functional utilization of propulsive capacity during human walking. Journal of Applied Biomechanics 34(6) 474482. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DanionF.BonnardM. & PailhousJ. (1997). Intentional on-line control of propulsive forces in human gait. Experimental Brain Research 116(3) 525538. PubMed ID: 9372302 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVitaP. & HortobagyiT. (2000). Age causes a redistribution of joint torques and powers during gait. Journal of Applied Physiology 88(5) 18041811. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DonelanJ.M.KramR. & KuoA.D. (2002). Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics 35(1) 117124. PubMed ID: 11747890 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FarrisD.J. (2016). Emulating constant acceleration locomotion mechanics on a treadmill. Journal of Biomechanics 49(5) 653658. PubMed ID: 26897649 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FranzJ.R. (2016). The age-associated reduction in propulsive power generation in walking. Exercise and Sport Sciences Reviews 44(4) 129136. PubMed ID: 27433977 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FranzJ.R. & KramR. (2013a). Advanced age affects the individual leg mechanics of level, uphill, and downhill walking. Journal of Biomechanics 46(3) 535540. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FranzJ.R. & KramR. (2013b). How does age affect leg muscle activity/coactivity during uphill and downhill walking? Gait & Posture 37(3) 378384. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FranzJ.R. & KramR. (2014). Advanced age and the mechanics of uphill walking: A joint-level, inverse dynamic analysis. Gait & Posture 39(1) 135140. PubMed ID: 23850328 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GottschallJ.S. & KramR. (2003). Energy cost and muscular activity required for propulsion during walking. Journal of Applied Physiology 94(5) 17661772. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GottschallJ.S. & KramR. (2005). Energy cost and muscular activity required for leg swing during walking. Journal of Applied Physiology 99(1) 2330. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrafA.JudgeJ.O.OunpuuS. & ThelenD.G. (2005). The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance. Archives of Physical Medicine and Rehabilitation 86(11) 21772183. PubMed ID: 16271567 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HsiaoH.KnarrB.A.HigginsonJ.S. & Binder-MacleodS.A. (2015). The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Human Movement Science 39212221. PubMed ID: 25498289 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KahnM. & WilliamsG. (2015). Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking. American Journal of Physical Medicine & Rehabilitation 94(2) 114122. PubMed ID: 25133620 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KerriganD.C.LeeL.W.CollinsJ.J.RileyP.O. & LipsitzL.A. (2001). Reduced hip extension during walking: Healthy elderly and fallers versus young adults. Archives of Physical Medicine and Rehabilitation 82(1) 2630. PubMed ID: 11239282 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KerriganD.C.ToddM.K.Della CroceU.LipsitzL.A. & CollinsJ.J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation 79(3) 317322. PubMed ID: 9523785 doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MilotM.H.NadeauS. & GravelD. (2007). Muscular utilization of the plantarflexors, hip flexors and extensors in persons with hemiparesis walking at self-selected and maximal speeds. Journal of Electromyography and Kinesiology 17(2) 184193. PubMed ID: 16516495 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NaK.P.KimY.L. & LeeS.M. (2015). Effects of gait training with horizontal impeding force on gait and balance of stroke patients. Journal of Physical Therapy Science 27(3) 733736. PubMed ID: 25931719 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PiazzaS.J.OkitaN. & CavanaghP.R. (2001). Accuracy of the functional method of hip joint center location: Effects of limited motion and varied implementation. Journal of Biomechanics 34(7) 967973. PubMed ID: 11410180 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RasskeK. & FranzJ.R. (2018). Aging effects on the Achilles tendon moment arm during walking. Journal of Biomechanics 773439. PubMed ID: 29945784 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RileyP.O.PaoliniG.Della CroceU.PayloK.W. & KerriganD.C. (2007). A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait & Posture 26(1) 1724. PubMed ID: 16905322 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SelingerJ.C.O’ConnorS.M.WongJ.D. & DonelanJ.M. (2015). Humans can continuously optimize energetic cost during walking. Current Biology 25(18) 24522456. PubMed ID: 26365256 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilderA.HeiderscheitB. & ThelenD.G. (2008). Active and passive contributions to joint kinetics during walking in older adults. Journal of Biomechanics 41(7) 15201527. PubMed ID: 18420214 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WattJ.R.FranzJ.R.JacksonK.DicharryJ.RileyP.O. & KerriganD.C. (2010). A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clinical Biomechanics 25(5) 444449. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WattJ.R.JacksonK.FranzJ.R.DicharryJ.EvansJ. & KerriganD.C. (2011a). Effect of a supervised hip flexor stretching program on gait in elderly individuals. PM & R 3(4) 324329. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WattJ.R.JacksonK.FranzJ.R.DicharryJ.EvansJ. & KerriganD.C. (2011b). Effect of a supervised hip flexor stretching program on gait in frail elderly patients. PM & R 3(4) 330335. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A.PatlaA.E.FrankJ.S. & WaltS.E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy 70(6) 340347. PubMed ID: 2345777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 121 121 59
Full Text Views 27 27 5
PDF Downloads 7 7 1
Altmetric Badge
PubMed
Google Scholar