Replacing Sedentary Time With Light or Moderate–Vigorous Physical Activity Across Levels of Frailty

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The authors sought to examine how much sedentary time needs to be replaced by light or moderate–vigorous physical activity in order to reduce frailty and protect against mortality. The authors built isotemporal substitution models to assess the theoretical effect of replacing sedentary behavior with an equal amount of light or moderate–vigorous activity on frailty and mortality in community-based adults aged 50 years and older. Controlling for age, sex, body mass index, marital status, race, education, employment status, and National Health and Nutrition Examination Study cycle, replacing 1 hr of sedentary time with moderate–vigorous or light physical activity daily was associated with a lower frailty index. For mortality, results varied based on frailty level. Replacing sedentary behavior with moderate–vigorous exercise was associated with lower mortality risk in vulnerable individuals; however, replacing sedentary behavior with light activity was associated with lower mortality risk in frailer individuals.

Godin, Rockwood, and Theou are with Geriatric Medicine, Nova Scotia Health Authority and Dalhousie University, Nova Scotia, Canada. Blodgett is with the MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom.

Theou (olga.theou@dal.ca) is corresponding author.
  • Blodgett, J., Theou, O., Kirkland, S., Andreou, P., & Rockwood, K. (2014). The association between sedentary behaviour, moderate-vigorous physical activity and frailty in NHANES cohorts. Maturitas, 80(2), 187–191. PubMed ID: 25542406 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollen, K.A., Biemer, P.P., Karr, A.F., Tueller, S., & Berzofsky, M.E. (2016). Are survey weights needed? A review of diagnostic tests in regression analysis. Annual Review of Statistics and Its Application, 3(1), 375–392. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buman, M.P., Hekler, E.B., Haskell, W.L., Pruitt, L., Conway, T.L., Cain, K.L., … King, A.C. (2010). Objective light-intensity physical activity associations with rated health in older adults. American Journal of Epidemiology, 172(10), 1155–1165. PubMed ID: 20843864 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention and National Center for Health Statistics. (2013). National health and nutrition examination survey data. Retrieved from http://www.cdc.gov/nchs/nhanes.htm.

    • Export Citation
  • Clegg, A., Young, J., Iliffe, S., Rikkert, M.O., & Rockwood, K. (2013). Frailty in elderly people. The Lancet, 381, 752–762. doi:

  • de Souto Barreto, P., Rolland, Y., Maltais, M., & Vellas, B. (2018). Associations of multidomain lifestyle intervention with frailty: Secondary analysis of a randomized controlled trial. The American Journal of Medicine, 131(11), 1382.e7–1382.e13. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuMouchel, W.H., & Duncan, G.J. (1983). Using sample survey weights in multiple regression analyses of stratified samples. Journal of the American Statistical Association, 78(383), 535–543. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eendebak, R.J.A.H., Theou, O., van der Valk, A., Godin, J., & Rockwood, K. (2018). Defining clinically important differences in frailty: Resuls from community-dwelling people and emergency department patients. Canadian Geriatrics Journal, 21(3), 240.

    • Search Google Scholar
    • Export Citation
  • Gorman, E., Hanson, H.M., Yang, P.H., Khan, K.M., Liu-Ambrose, T., & Ashe, M.C. (2014). Accelerometry analysis of physical activity and sedentary behavior in older adults: A systematic review and data analysis. European Review of Aging and Physical Activity, 11(1), 35–49. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Dumuid, D., Bengoechea, E.G., Shrestha, N., Bauman, A., Olds, T., & Pedisic, Z. (2018). Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 1–68. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kehler, D.S., Clara, I., Hiebert, B., Stammers, A.N., Hay, J.L., Schultz, A., … Duhamel, T.A. (2018). The association between bouts of moderate to vigorous physical activity and patterns of sedentary behavior with frailty. Experimental Gerontology, 104(2017), 28–34. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.M., Shiroma, E.J., Lobelo, F., Puska, P., Blair, S.N., Katzmarzyk, P.T., … Wells, J.C. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380(9838), 219–229. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mañas, A., del Pozo-Cruz, B., García-García, F.J., Guadalupe-Grau, A., & Ara, I. (2017). Role of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: A short systematic review. European Journal of Sport Science, 17(7), 940–953. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mañas, A., del Pozo-Cruz, B., Guadalupe-Grau, A., Marín-Puyalto, J., Alfaro-Acha, A., Rodríguez-Mañas, L., … Ara, I. (2018). Reallocating accelerometer-assessed sedentary time to light or moderate- to vigorous-intensity physical activity reduces frailty levels in older adults: An isotemporal substitution approach in the TSHA study. Journal of the American Medical Directors Association, 19(2), 110–116. doi: 10.1016/j.jamda.2017.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Chen, K.Y., Freedson, P.S., Buchowski, M.S., Beech, B.M., Pate, R.R., & Troiano, R.P. (2008). Amount of time spent in sedentary behaviors in the United States, 2003-2004. American Journal of Epidemiology, 167(7), 875–881. PubMed ID: 18303006 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Keadle, S.K., Troiano, R.P., Kahle, L., Koster, A., Brychta, R., … Berrigan, D. (2016). Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. The American Journal of Clinical Nutrition, 104(5), 1424–1432. PubMed ID: 27707702 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekary, R.A., & Ding, E. (2019). Isotemporal substitution as the gold standard model for physical activity epidemiology: Why it is the most appropriate for activity time research. International Journal of Environmental Research and Public Health, 16(5), 797. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekary, R.A., Lucas, M., Pan, A., Okereke, O.I., Willett, W.C., Hu, F.B., & Ding, E.L. (2013). Isotemporal substitution analysis for physical activity, television watching, and risk of depression. American Journal of Epidemiology, 178(3), 474–483. PubMed ID: 23785112 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekary, R.A., Willett, W.C., Hu, F.B., & Ding, E.L. (2009). Isotemporal substitution paradigm for physical activity epidemiology and weight change. American Journal of Epidemiology, 170(4), 519–527. PubMed ID: 19584129 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puts, M.T.E., Toubasi, S., Andrew, M.K., Ashe, M.C., Ploeg, J., Atkinson, E., … Mcgilton, K. (2017). Interventions to prevent or reduce the level of frailty in community-dwelling older adults: A scoping review of the literature and international policies. Age and Ageing, 46(3), 383–392. PubMed ID: 28064173 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, D., Ricci, C., Baumeister, S.E., & Leitzmann, M.F. (2016). Replacing sedentary time with physical activity in relation to mortality. Medicine & Science in Sports & Exercise, 48(7), 1312–1319. PubMed ID: 26918559 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrack, J.A., Cooper, R., Koster, A., Shiroma, E.J., Murabito, J.M., Rejeski, W.J., … Harris, T.B. (2016). Assessing daily physical activity in older adults: Unraveling the complexity of monitors, measures, and methods. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 71(8), 1039–1048. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Searle, S.D., Mitnitski, A.B., Gahbauer, E.A., Gill, T.M., & Rockwood, K. (2008). A standard procedure for creating a fraily index. BMC Geriatrics, 8, 24. PubMed ID: 18826625 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solon, G., Haider, S.J., Wooldridge, J.M., Solon, G., & Haider, S.J. (2019). What are we weighting for? Journal of Human Resources, 50(2), 301–316. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperrin, M., & Buchan, I. (2013). Modelling time to event with observations made at arbitrary times. Statistics in Medicine, 32(1), 99–109. PubMed ID: 22807157 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamatakis, E., Rogers, K., Ding, D., Berrigan, D., Chau, J., Hamer, M., & Bauman, A. (2015). All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201, 129 mid-aged and older adults. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 121. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strath, S.J., Pfeiffer, K.A., & Whitt-Glover, M.C. (2012). Accelerometer use with children, older adults, and adults with functional limitations. Medicine & Science in Sports & Exercise, 44(Suppl. 1), S77–S85. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theou, O., Blodgett, J.M., Godin, J., & Rockwood, K. (2017). Association between sedentary time and mortality across levels of frailty. Canadian Medical Association Journal, 189(33), E1056–E1064. PubMed ID: 28827436 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theou, O., Park, G.H., Garm, A., Song, X., Clarke, B., & Rockwood, K. (2017). Reversing frailty levels in primary care using the CARES model. Canadian Geriatrics Journal, 20(3), 105–111. PubMed ID: 28983384 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., & Mcdowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181–188. PubMed ID: 18091006 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tse, A.C.Y., Wong, T.W.L., & Lee, P.H. (2015). Effect of low-intensity exercise on physical and cognitive health in older adults: A systematic review. Sports Medicine—Open, 1(1), 37. PubMed ID: 26512340 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winship, C., & Radbill, L. (1994). Sampling weights and regression analysis. Sociological Methods & Research, 23(2), 230–257. doi:

All Time Past Year Past 30 Days
Abstract Views 337 337 85
Full Text Views 27 27 4
PDF Downloads 13 13 2