Comparison of Linear and Nonlinear HRV Dynamics Across Exercise Intensities After Menopause

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The authors compared the linear and nonlinear heart rate variability dynamics from rest through maximal exercise in postmenopausal women who trained at either moderate or high intensities. The outcome variables included the RR triangular index, TINN, SD1, SD2, SD1/SD2, DFA α1, DFA α2, and α1/α2. Maximal exercise reduced SD1, SD2, DFA α1, DFA α2, α1/α2, RRTri, and TINN in both groups and increased SD1/SD2 (p < .05). Two minutes of active recovery produced significant increases in SD1, SD2, DFA α1, and TINN, compared with exercise in both groups (p < .0001). There was also a significant main effect between groups for RRTri during exercise recovery, with the moderate group achieving higher levels (p < .04). The authors have shown that both moderate and vigorous exercise training can lead to a healthy response to maximal exercise and recovery, with the moderate group having a slightly improved recovery in the triangular index.

The authors are with the Department of Kinesiology, University of San Francisco, San Francisco, CA, USA.

Orri (jorri@usfca.edu) is corresponding author.
  • Ainsworth, B.E. (2011). 2011 Compendium of physical activities. Retrieved from http://links.lww.com/MSS/A82

    • PubMed
    • Export Citation
  • Bai, X., Li, J., Zhou, L., & Li, X. (2009). Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H765–H774. PubMed ID: 19465541 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckers, F., Verheyden, B., & Aubert, A.E. (2006). Aging and nonlinear heart rate control in a healthy population. American Journal of Physiology-Heart and Circulatory Physiology, 290(6), H2560–H2570. PubMed ID: 16373585 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S.J., & Brown, J.A. (2007). Resting and postexercise cardiac autonomic control in trained master athletes. The Journal of Physiological Sciences, 57(1), 23–29. PubMed ID: 17178009 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, C.C., Casali, K.R., Baraldi, D., Conzatti, A., Araújo, A.S., Khaper, N., . . . Belló-Klein, A. (2014). Efficacy of a low dose of estrogen on antioxidant defenses and heart rate variability. Oxidative Medicine and Cellular Longevity, 2014, 1–7. PubMed ID: 24738017 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Yao, R., Yin, G., & Li, J. (2017). Consecutive ultra-short-term heart rate variability to track dynamic changes in autonomic nervous system during and after exercise. Physiological Measurement, 38(7), 1384–1395. PubMed ID: 28640758 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rezende Barbosa, M.d.C, Vanderlei, L.C.M., Neves, L.M., Takahashi, C., Torquato, P.R.D.S., Fortaleza, A.C.S., . . . Perez Riera, A.R. (2018). Impact of functional training on geometric indices and fractal correlation property of heart rate variability in postmenopausal women. Annals of Noninvasive Electrocardiology, 23(1). doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias de Carvalho, T., Marcelo Pastre, C., Claudino Rossi, R., de Abreu, L.C., Valenti, V.E., & Marques Vanderlei, L.C. (2011). Geometric index of heart rate variability in chronic obstructive pulmonary disease. [Indices geometricos de variabilidade da frequencia cardiaca na doenca pulmonar obstrutiva cronica]. Revista Portuguesa de Pneumologia, 17(6), 260–265. PubMed ID: 21920699 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erden, M., Kocaman, S.A., Poyraz, F., Topal, S., Sahinarsian, A., Boyaci, B., . . . Yalçin, M.R. (2011). Incremental effects of serum uric acid levels, autonomic dysfunction, and low-grade inflammation on nocturnal blood pressure in untreated hypertensive patients and normotensive individuals. Türk Kardiyoloji Derneği Arşivi, 39(7), 531–539. PubMed ID: 21983762 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. PubMed ID: 17695343 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilder, M., & Ramsbottom, R. (2008). Measures of cardiac autonomic control in women with differing volumes of physical activity. Journal of Sports Sciences, 26(7), 781–786. PubMed ID: 18409109 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes, R.L., Vanderlei, L.C., Garner, D.M., Santana, M.D., de Abreu, L.C., & Valenti, V.E. (2018). Poincaré plot analysis of ultra-short-term heart rate variability during recovery from exercise in physically active men. The Journal of Sports Medicine and Physical Fitness, 58(7-8), 998–1005. PubMed ID: 28474874 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamaad, A., Sosin, M., Blann, A.D., Patel, J., Lip, G.Y., & MacFadyen, R.J. (2005). Markers of inflammation in acute coronary syndromes: Association with increased heart rate and reductions in heart rate variability. Clinical Cardiology, 28(12), 570–576. PubMed ID: 16405201 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, P.J., O’Donnell, E., Picton, P., Morris, B.L., Notarius, C.F., & Floras, J.S. (2016). After-exercise heart rate variability is attenuated in postmenopausal women and unaffected by estrogen therapy. Menopause, 23(4), 390–395. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, A., Tulppo, M.P., Makikallio, T.H., Laukkanen, R., Nissila, S., & Huikuri, H.V. (2001). Changes in cardiac autonomic regulation after prolonged maximal exercise. Clinical Physiology, 21(2), 238–245. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiger, R.E., Stein, P.K., & Bigger, J.T., Jr. (2005). Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10(1), 88–101. PubMed ID: 15649244 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouidi, E., Haritonidis, K., Koutlianos, N., & Deligiannis, A. (2002). Effects of athletic training on heart rate variability triangular index. Clinical Physiology and Functional Imaging, 22(4), 279–284. PubMed ID: 12402451 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavi, S., Nevo, O., Thaler, I., Rosenfeld, R., Dayan, L., Hirshoren, N., . . . Jacob, G. (2007). Effect of aging on the cardiovascular regulatory systems in healthy women. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292, R788. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendonca, G.V., Heffernan, K.S., Rossow, L., Guerra, M., Pereira, F.D., & Fernhall, B. (2010). Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Applied Physiology, Nutrition, and Metabolism, 35(4), 439–446. PubMed ID: 20725109 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M.T., Wolf, J.P., . . . Regnard, J. (2004a). Decrease in heart rate variability with overtraining: Assessment by the Poincaré plot analysis. Clinical Physiology and Functional Imaging, 24(1), 10–18. PubMed ID: 14717743 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J.D., & Regnard, J. (2004b). Quantitative Poincaré plot analysis of heart rate variability: Effect of endurance training. European Journal of Applied Physiology, 91(1), 79–87. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orri, J.C., Hughes, E.M., Mistry, D.G., & Scala, A.H. (2017). Is vigorous exercise training superior to moderate for CVD risk after menopause? Sports Medicine International Open, 1, E166–E171. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavithran, P., Nandeesha, H., Sathiyapriya, V., Bobby, Z., & Madanmohan, T. (2008). Short-term heart variability and oxidative stress in newly diagnosed essential hypertension. Clinical and Experimental Hypertension, 30(7), 486–496. PubMed ID: 18855253 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reardon, M., & Malik, M. (1996). Changes in heart rate variability with age. PACE: Pacing and Clinical Electrophysiology, 19(11, Pt. 2), 1863–1866. PubMed ID: 8945057 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reland, S., Ville, N.S., Wong, S., Gauvrit, H., Kervio, G., & Carre, F. (2003). Exercise heart rate variability of older women in relation to level of physical activity. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, B585–B591. PubMed ID: 12865473 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Medicine & Science in Sports & Exercise, 39, 1366–1373. PubMed ID: 17762370 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, F., & Ginsberg, J.P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. PubMed ID: 29034226 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, F., McCraty, R., & Zerr, C.L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. PubMed ID: 25324790 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P., Hu, S., & Yu, H. (2018). Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics. Medical & Biological Engineering & Computing, 56(2), 221–231. PubMed ID: 28699055 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simula, S., Vanninen, E., Lehto, S., Hedman, A., Pajunen, P., Syvanne, M., & Hartikainen, J. (2014). Heart rate variability associates with asymptomatic coronary atherosclerosis. Clinical Autonomic Research, 24(1), 31–37. PubMed ID: 24343834 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares-Miranda, L., Sattelmair, J., Chaves, P., Duncan, G.E., Siscovick, D.S., Stein, P.K., & Mozaffarian, D. (2014). Physical activity and heart rate variability in older adults: The Cardiovascular Health Study. Circulation, 129(21), 2100–2110. PubMed ID: 24799513 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, P.K., & Reddy, A. (2005). Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing and Electrophysiology Journal, 5(3), 210–220. PubMed ID: 16943869

    • Search Google Scholar
    • Export Citation
  • Tada, Y., Yoshizaki, T., Tomata, Y., Yokoyama, Y., Sunami, A., & Kawano, Y. (2017). The impact of menstrual cycle phases on cardiac autonomic nervous system activity: An observational study considering lifestyle (diet, physical activity, and sleep) among female college students. Journal of Nutritional Science and Vitaminology, 63(4), 249–255. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, A.L., Ramos, P.S., Vianna, L.C., & Ricardo, D.R. (2015). Heart rate variability across the menstrual cycle in young women taking oral contraceptives. Psychophysiology, 52(11), 1451–1455. PubMed ID: 26332575 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W.R. (2010). ACSM’s guidelines for exercise testing and prescription. Baltimore, MD: Lippincott Williams & Wilkins.

  • Tulppo, M.P., Kiviniemi, A.M., Hautala, A.J., Kallio, M., Seppanen, T., Tiinanen, S., . . . Huikuri, H.V. (2011). Sympatho-vagal interaction in the recovery phase of exercise. Clinical Physiology and Functional Imaging, 31(4), 272–281. PubMed ID: 21672134 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulppo, M.P., Makikallio, T.H., Seppanen, T., Laukkanen, R.T., & Huikuri, H.V. (1998). Vagal modulation of heart rate during exercise: Effects of age and physical fitness. The American Journal of Physiology, 274(2, Pt. 2), 424.

    • Search Google Scholar
    • Export Citation
  • Tulppo, M.P., Makikallio, T.H., Takala, T.E., Seppanen, T., & Huikuri, H.V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. The American Journal of Physiology, 271(1 Pt 2), 244. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vikman, S., Makikallio, T.H., Yli-Mayry, S., Pikkujamsa, S., Koivisto, A.M., Reinikainen, P., . . . Huikuri, H.V. (1999). Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation, 100(20), 2079–2084. PubMed ID: 10562264 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D.P., Jarczok, M.N., Ellis, R.J., Hillecke, T.K., Thayer, J.F., & Koenig, J. (2017). Two-week test–retest reliability of the Polar® RS800CX™ to record heart rate variability. Clinical Physiology and Functional Imaging, 37(6), 776–781. PubMed ID: 26815165 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 59 59 59
Full Text Views 3 3 3
PDF Downloads 0 0 0