An Intense, But Ecologically Valid, Resistance Exercise Session Does Not Alter Growth Factors Associated With Cognitive Health

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The purpose of this investigation was to assess the acute changes in growth factors associated with cognitive health following two ecologically valid, intense resistance exercise sessions. Twenty-nine late-middle-aged adults performed one session of either (a) moderate-load resistance exercise or (b) high-load resistance exercise. Venous blood was collected prior to warm-up, immediately following exercise and 30 min following exercise. Serum was analyzed for brain-derived neurotrophic factor, insulin-like growth factor 1, and vascular endothelial growth factor. Session intensity was determined by blood lactate concentration and session rating of perceived exertion. Postexercise blood lactate was greater following moderate-load when compared with high-load resistance exercise. Subjective session intensity was rated higher by the session rating of perceived exertion following moderate-load when compared with high-load resistance exercise. No differences were observed in serum growth factor levels between groups. Ecologically valid and intense moderate-load or high-load exercise methods do not alter serum growth factor levels in late-middle-aged adults.

Marston, Brown, Teo, and Peiffer are with the Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia. Marston, Brown, Rainey-Smith, and Peiffer are with Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia. Brown, Rainey-Smith, Bird, and Martins are also with the Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia. Brown, Rainey-Smith, Bird, and Martins are with the Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia. Wijaya is with the Department of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.

Marston (K.Marston@murdoch.edu.au) is corresponding author.
  • Baechle, T.R., & Earle, R.W. (2008). Essentials of strength training and conditioning (3rd ed.). Champaign, IL: Human Kinetics.

  • Barnes, J.N. (2015). Exercise, cognitive function, and aging. Advances in Physiology Education, 39(2), 5562. PubMed ID: 26031719 doi:

  • Cassilhas, R.C., Viana, V.A.R., Grassmann, V., Santos, R.T., Santos, R.F., Tufik, S., & Mello, M.T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine & Science in Sports & Exercise, 39(8), 14011407. PubMed ID: 17762374 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, D.D., Hoffman, J.R., Mangine, G.T., Jajtner, A.R., Townsend, J.R., Beyer, K.S., . . . Stout, J.R. (2016). Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. Journal of Applied Physiology, 121(1), 123128. PubMed ID: 27231312 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen-Mansfield, J., Marx, M.S., & Guralnik, J.M. (2003). Motivators and barriers to exercise in an older community-dwelling population. Journal of Aging and Physical Activity, 11(2), 242253. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colcombe, S., & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130. PubMed ID: 12661673 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connor, B., Young, D., Yan, Q., Faull, R.L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Molecular Brain Research, 49(1–2), 7181. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Correia, P.R., Pansani, A., Machado, F., Andrade, M., da Silva, A.C., Scorza, F.A., . . . Arida, R.M. (2010). Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics, 65(11), 11231126. PubMed ID: 21243284 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotman, C.W., Berchtold, N.C., & Christie, L.-A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464472. PubMed ID: 17765329 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, C.L., Marshall, A.L., Sjostrom, M., Bauman, A.E., Booth, M.L., Ainsworth, B.E., . . . Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 13811395. PubMed ID: 12900694 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Torre, J.C. (2002). Alzheimer’s disease: how does it start? Journal of Alzheimer’s Disease, 4(6), 497512. PubMed ID: 31747135 doi:

  • Elmlinger, M.W., Kuhnel, W., Weber, M.M., & Ranke, M.B. (2004). Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clinical Chemistry and Laboratory Medicine, 42(6), 654664. PubMed ID: 15259383 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., . . . Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18(10), 28032812. PubMed ID: 14656329 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrara, N., Gerber, H.P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669676. PubMed ID: 12778165 doi:

  • Ferris, L.T., Williams, J.S., & Shen, C.L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39(4), 728734. PubMed ID: 17414812 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujimura, H., Altar, C.A., Chen, R., Nakamura, T., Nakahashi, T., Kambayashi, J., . . . Tandon, N.N. (2002). Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thrombosis and Haemostasis, 87(4), 728734. PubMed ID: 12008958 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavin, T.P., Drew, J.L., Kubik, C.J., Pofahl, W.E., & Hickner, R.C. (2007). Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiologica, 191(2), 139146. PubMed ID: 17565567 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goekint, M., De Pauw, K., Roelands, B., Njemini, R., Bautmans, I., Mets, T., & Meeusen, R. (2010). Strength training does not influence serum brain-derived neurotrophic factor. European Journal of Applied Physiology, 110(2), 285293. PubMed ID: 20467874 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, S.M., Spiering, B.A., Alemany, J.A., Tuckow, A.P., Rarick, K.R., Staab, J.S., . . . Nindl, B.C. (2013). Exercise-induced insulin-like growth factor I system concentrations after training in women. Medicine & Science in Sports & Exercise, 45(3), 420428. PubMed ID: 23034644 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohman, T.J., Bell, S.P., Jefferson, A.L., & Alzheimer’s Disease Neuroimaging Initiative. (2015). The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: Exploring interactions with biomarkers of Alzheimer’s disease. JAMA Neurology, 72(5), 520529. PubMed ID: 25751166 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakicic, J.M., Winters, C., Lang, W., & Wing, R.R. (1999). Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: A randomized trial. The Journal of the American Medical Association, 282(16), 15541560. PubMed ID: 10546695 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J.I., & Clemmons, D.R. (1995). Insulin-like growth factors and their binding proteins: Biological actions. Endocrine Reviews, 16(1), 334. PubMed ID: 7758431 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaepen, K., Goekint, M., Heyman, E.M., & Meeusen, R. (2010). Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Medicine, 40(9), 765801. PubMed ID: 20726622 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraemer, W.J., Marchitelli, L., Gordon, S.E., Harman, E., Dziados, J.E., Mello, R., . . . Fleck, S.J. (1990). Hormonal and growth factor responses to heavy resistance exercise protocols. Journal of Applied Physiology, 69(4), 14421450. PubMed ID: 2262468 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrechts, D., & Carmeliet, P. (2006). VEGF at the neurovascular interface: Therapeutic implications for motor neuron disease. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1762(11), 11091121. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lautenschlager, N.T., Cox, K.L., Flicker, L., Foster, J.K., van Bockxmeer, F.M., Xiao, J., . . . Almeida, O.P. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. The Journal of the American Medical Association, 300(9), 10271037. PubMed ID: 18768414 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.J., Baek, J.-H., & Kim, Y.-H. (2015). Brain-derived neurotrophic factor is associated with cognitive impairment in elderly Korean individuals. Clinical Psychopharmacology and Neuroscience, 13(3), 283287. PubMed ID: 26598587 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louissaint, A., Jr., Rao, S., Leventhal, C., & Goldman, S.A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 34(6), 945960. PubMed ID: 12086642 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manini, T.M., Yarrow, J.F., Buford, T.W., Clark, B.C., Conover, C.F., & Borst, S.E. (2012). Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Hormone and IGF Research, 22(5), 167172. PubMed ID: 22727808 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, K.J., Brown, B.M., Rainey-Smith, S.R., Bird, S., Wijaya, L., Teo, S.Y., . . . Peiffer, J.J. (2019). Twelve weeks of resistance training does not influence peripheral levels of neurotrophic growth factors or homocysteine in healthy adults: a randomized-controlled trial. European Journal of Applied Physiology, 119(10), 21672176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, K.J., Newton, M.J., Brown, B.M., Rainey-Smith, S.R., Bird, S., Martins, R.N., & Peiffer, J.J. (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. Journal of Science and Medicine in Sport, 20(10), 899903. PubMed ID: 28511848 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, K.J., Peiffer, J.J., Newton, M.J., & Scott, B.R. (2017). A comparison of traditional and novel metrics to quantify resistance training. Scientific Reports, 7(1), 5606. PubMed ID: 28717150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, K.J., Peiffer, J.J., Rainey-Smith, S.R., Gordon, N., Teo, S.Y., Laws, S.M., . . . Brown, B.M. (2019). Resistance training enhances delayed memory in healthy middle-aged and older adults: A randomised controlled trial. Journal of Science and Medicine in Sport, 22(11), 12261231. PubMed ID: 31281076 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattson, M.P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27(10), 589594. PubMed ID: 15374669 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niblock, M.M., Brunso-Bechtold, J.K., & Riddle, D.R. (2000). Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. Journal of Neuroscience, 20(11), 41654176. PubMed ID: 10818152 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, W., Banks, W.A., Fasold, M.B., Bluth, J., & Kastin, A.J. (1998). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology, 37(12), 15531561. PubMed ID: 9886678 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pluchino, N., Russo, M., Santoro, A.N., Litta, P., Cela, V., & Genazzani, A.R. (2013). Steroid hormones and BDNF. Neuroscience, 239, 271279. PubMed ID: 23380505 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poduslo, J.F., & Curran, G.L. (1996). Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Molecular Brain Research, 36(2), 280286. PubMed ID: 8965648 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinhardt, R.R., & Bondy, C.A. (1994). Insulin-like growth factors cross the blood-brain barrier. Endocrinology, 135(5), 17531761. PubMed ID: 7525251 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas Vega, S., Knicker, A., Hollmann, W., Bloch, W., & Struder, H.K. (2010). Effect of resistance exercise on serum levels of growth factors in humans. Hormone and Metabolic Research, 42(13), 982986. PubMed ID: 21053157 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, M.D., Wekesa, A.L., Phelan, J.P., & Harrison, M. (2014). Resistance exercise increases endothelial progenitor cells and angiogenic factors. Medicine & Science in Sports & Exercise, 46(1), 1623. PubMed ID: 24346188 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saghaei, M., & Saghaei, S. (2011). Implementation of an open-source customizable minimization program for allocation of patients to parallel groups in clinical trials. Journal of Biomedical Science and Engineering, 4(11), 734739. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharfman, H.E., & MacLusky, N.J. (2006). Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Frontiers in Neuroendocrinology, 27(4), 415435. PubMed ID: 17055560 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selheim, F., Holmsen, H., & Vassbotn, F.S. (2002). Identification of functional VEGF receptors on human platelets. FEBS Letters, 512(1), 107110. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selkoe, D.J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595608. PubMed ID: 27025652 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonntag, W.E., Lynch, C.D., Cooney, P.T., & Hutchins, P.M. (1997). Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology, 138(8), 35153520. PubMed ID: 9231806 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, C.L., Ukropec, J., Ukropcova, B., & Pai, M.C. (2018). An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. Neuroimage: Clinical, 17, 272284. PubMed ID: 29527475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20(10), 25802590. PubMed ID: 15548201 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarrow, J.F., White, L.J., McCoy, S.C., & Borst, S.E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161165. PubMed ID: 20553806 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegenhorn, A.A., Schulte-Herbruggen, O., Danker-Hopfe, H., Malbranc, M., Hartung, H.D., Anders, D., . . . Hellweg, R. (2007). Serum neurotrophins—A study on the time course and influencing factors in a large old age sample. Neurobiology of Aging, 28(9), 14361445. PubMed ID: 16879899 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 522 522 35
Full Text Views 20 20 1
PDF Downloads 10 10 0