Considerations in Processing Accelerometry Data to Explore Physical Activity and Sedentary Time in Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

Processing decisions for accelerometry data can have important implications for outcome measures, yet little evidence exists exploring these in older adults. The aim of the current study was to investigate the impact of three potentially important criteria on older adults, physical activity, and sedentary time. Participants (n = 222: mean age 71.75 years [SD = 6.58], 57% male) wore ActiGraph GT3X+ for 7 days. Eight data processing combinations from three criteria were explored: low-frequency extension (on/off), nonwear time (90/120 min), and intensity cut points (moderate-to-vigorous physical activity ≥1,041 and >2,000 counts/min). Analyses included Wilcoxon signed-rank test, paired t tests, and correlation coefficients (significance, p < .05). Results for low-frequency extension on 90-min nonwear time and >1,041 counts/min showed significantly higher light and moderate-to-vigorous physical activity and lower sedentary time. Cut points had the greatest impact on physical activity and sedentary time. Processing criteria can significantly impact physical activity and/or sedentary time, potentially leading to data inaccuracies, preventing cross-study comparisons and influencing the accuracy of population surveillance.

Cleland and Hunter are with Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom. Ferguson and Ellis are with the School of Natural and Built Environment, Queen’s University Belfast, Belfast, United Kingdom. McCrorie is with MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, United Kingdom. Schipperijn is with the Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark. Cleland is also with School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom.

Cleland (c.cleland@qub.ac.uk) is corresponding author.
  • Aadland, E., Andersen, L.B., Anderssen, S.A., & Resaland, G.K. (2018). A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health, 18, 323. PubMed ID: 29510709 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ActiGraph R&D and Software Departments. (2011). ActiLife 5—User’s manual (Vol. H, p. 16). Pensacola, FL: Author.

  • Aguilar-Farias, N., Brown, W.J., & Peeters, G.M. (2014). ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. Journal of Science and Medicine in Sport, 17(3), 293299. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., . . . Leon, A.S. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine & Science in Sports & Exercise, 32(9), S498S516. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayabe, M., Kumahara, H., Morimura, K., & Tanaka, H. (2013). Epoch length and the physical activity bout analysis: An accelerometry research issue. BMC Research Notes, 6, 20. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bae, W., Suh, I.K.Y., Ryu, J., & Heo, J. (2017). Physical activity levels and well-being in older adults. Psychological Reports, 120(2), 192205. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, A., Van Den Hoek, D., Barnett, D., & Cerin, E. (2016). Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer. BMC Geriatrics, 16(1), 211. PubMed ID: 27931188 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cain, K.L., Bonilla, E., Conway, T.L., & Schipperijn, J. (2018). Defining accelerometer nonwear time to maximize detection of sedentary time in youth. Pediatric Exercise Science, 30(2), 288295. PubMed ID: 29276859 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cain, K.L., Conway, T.L., Adams, M.A., Husak, L.E., & Sallis, J.F. (2013). Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. International Journal of Behavioural Nutrition and Physical Activity, 10(1), 5157. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cain, K.L., Sallis, J.F., Conway, T.L., Van Dyck, W., & Calhoon, L. (2013). Using accelerometers in youth physical activity studies: A review of methods. Journal of Physical Activity & Health, 10, 437450. PubMed ID: 23620392 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. PubMed ID: 20581716 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copeland, J.L., & Esliger, D.W. (2009). Accelerometer assessment of physical activity in active, healthy older adults. Journal of Aging and Physical Activity, 17, 1730. PubMed ID: 19299836 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbett, D.B., Wanigatunga, A.A., Valiani, V., Hand-berg, E.M., Buford, T.W., Brumback, B., . . . Manini, T.M. (2017). Metabolic costs of daily activity in older adults (Chores XL) study: Design and methods. Contemporary Clinical Trials Communications, 6, 18. PubMed ID: 28649668 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Churilla, J.R., & Bassett, D.R. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology, 98, 601612. PubMed ID: 17058102 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, M.G., & Fox, K.R. (2007). Physical activity patterns assessed by accelerometry in older people. European Journal of Applied Physiology, 100(5), 581589. PubMed ID: 17063361 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, G., Hunter, R., Hino, A.A.F., Cleland, C.L., Ferguson, S., Murtagh, B., . . . Reis, R. (2018). Study protocol: Healthy Urban Living and Ageing in Place (HULAP): An international, mixed methods study examining the associations between physical activity, built and social environments for older adults the UK and Brazil. BMC Public Health, 18, 1135. PubMed ID: 30241475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Buchner, D.M., & Morland, K.B. (2012). Objective measurement of physical activity and sedentary behavior among US adults aged 60 years or older. Preventing Chronic Disease, 9, E26. PubMed ID: 22172193

    • Search Google Scholar
    • Export Citation
  • Feito, Y., Garner, H.R., & Bassett, D.R. (2015). Evaluation of ActiGraph’s low-frequency filter in laboratory and free-living environments. Medicine & Science in Sports & Exercise, 47(1), 211217. PubMed ID: 24870583 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feito, Y., Hornbuckle, L.M., Reid, L.A., & Crouter, S.E. (2017). Effect of actigraph’s low frequency extension for estimating steps and physical activity intensity. PLoS One, 12(11), e0188242. PubMed ID: 29155845 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S.E., Melanson, E., & Sirard, J. (1998) Calibration of the Computer Science and Applications, Inc. Accelerometer. Medicine & Science in Sports & Exercise, 30, 777781. PubMed ID: 9588623 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, K.P., McClain, J.J., Schmid, K.K., Storti, K.L., High, R.R., Underwood, D.A., . . . Kriska, A.M. (2010). Issues in accelerometer methodology: The role of epoch length on estimates of physical activity and relationships with health outcomes in overweight, post-menopausal women. International Journal of Behavioural Nutrition and Physical Activity, 7, 5353. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorman, E., Hanson, H.M., Yang, P.H., Khan, K.M., Liu-Ambrose, T., & Ashe, M.C. (2014). Accelerometry analysis of physical activity and sedentary behavior in older adults: A systematic review and data analysis. European Review of Aging and Physical Activity, 11, 3549. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granat, M.H. (2012). Event-based analysis of free-living behaviour. Physiological Measurement, 33(11), 17851800. PubMed ID: 23110873 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heesh, K.C., Hill, R.L., Aguilar-Farias, A., van Uffelen, J.G.Z., & Pavey, T. (2018). Validity of objective methods for measuring sedentary behaviour in older adults: A systematic review. International Journal of Behavioural Nutrition and Physical Activity, 15, 119. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, C.A., Staudenmayer, J.W., & Freedson, P.S. (2009). Accelerometer prediction of energy expenditure: Vector magnitude versus vertical axis. Medicine & Science in Sports & Exercise, 41(12), 21992206. PubMed ID: 19915498 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutto, B., Howard, V.J., Blair, S.N., Colabianchi, N., Vena, J.E., Rhodes, D., & Hooker, S.P. (2013). Identifying accelerometer nonwear and wear time in older adults. International Journal of Behavioural Nutrition and Physical Activity, 10, 120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocherginsky, M., Huisingh-Scheetz, M., Dale, W., Lauderdale, D.S., & Waite, L. (2017). Measuring physical activity with hip accelerometry among U.S. older adults: How many days are enough? PLoS One, 12(1), e0170082. PubMed ID: 28081249 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ku, P.W., Steptoe, A., Liao, Y., Sun, W.J., & Chen, LJ. (2018). Prospective relationship between objectively measured light physical activity and depressive symptoms in later life. International Journal of Geriatric Psychiatry, 33(1), 5865. PubMed ID: 28181713 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159174. PubMed ID: 843571 doi:

  • McPhee, J.S., French, D.P., Jackson, D., Nazroo, J., Pendleton, N., & Degens, H. (2016). Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology, 17, 567580. PubMed ID: 26936444 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., . . . Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. PubMed ID: 28303543 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owen, N., Healy, G.N., Matthews, C.E., & Dunstan, D.W. (2010). Too much sitting: The population health science of sedentary behavior. Exercise and Sport Sciences Reviews, 38(3), 105113. PubMed ID: 20577058 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedisic, Z., & Bauman, A. (2015). Accelerometer-based measures in physical activity surveillance: Current practices and issues. British Journal of Sports Medicine, 49(4), 219223. PubMed ID: 25370153 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallis, J.F., & Saelens, B.E. (2000). Assessment of physical activity by self-report: Status, limitations, and future directions. Research Quarterly for Exercise and Sport, 71, 114. PubMed ID: 10925819 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., Junior, J.H., Tribess, S., Marocolo Junior, M., Stabelini Neto, A., & Virtuoso Junior, J.S. (2018). Number of days required for reliably estimating physical activity and sedentary behaviour from accelerometer data in older adults. Journal of Sports Sciences, 36(14), 15721577. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seymour, D.G., Ball, A.E., Russell, E.M., Primrose, W.R., Garratt, A.M., & Crawford, J.R. (2001). Problems in using health survey questionnaires in older patients with physical disabilities. The reliability and validity of the SF-36 and the effect of cognitive impairment. Journal of Evaluation in Clinical Practice, 7(4), 411418. PubMed ID: 11737532 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strath, S.J., Greenwald, M.J., Isaacs, R., Hart, T.L., Lenz, E.K., Dondzila, C.J., & Swartz, A.M. (2012). Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults. International Journal of Behavioural Nutrition and Physical Activity, 9(40), 40. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toftager, M., Kristensen, P.L., Oliver, M., Duncan, S., Christiansen, L.B., Boyle, E., . . . Troelsen, J. (2013). Accelerometer data reduction in adolescents: Effects on sample retention and bias. International Journal of Behavioural Nutrition and Physical Activity, 10, 140. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40, 181188. PubMed ID: 18091006 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., McIver, K.L., & Pate, R.R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine & Science in Sports & Exercise, 37, S531S543. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations Population Fund (UNFPA). (2012). Ageing in the twenty-first century: A celebration and a challenge. Retrieved from https://www.unfpa.org/sites/default/files/pub-pdf/Ageing%20report.pdf

    • Search Google Scholar
    • Export Citation
  • Wanner, M., Martin, B.W., Meier, F., Probst-Hensch, N., & Kriemler, S. (2013). Effects of filter choice in GT3X accelerometer assessments of free-living activity. Medicine & Science in Sports & Exercise, 45, 170177. PubMed ID: 22895373 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, D.S., Evenson, K.R., Vaughn, A., Rodgers, A.B., & Troiano, R.P. (2005). Accelerometer use in physical activity: Best practices and research recommendations. Medicine & Science in Sports & Exercise, 37(11), S582S588. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, J.M., Ekelund, U., Besson, H., Mezzani, A., Geladas, N., & Vanhees, L. (2010). Assessment of physical activity—A review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation, 17, 127139. PubMed ID: 20215971 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 570 570 52
Full Text Views 39 39 0
PDF Downloads 29 29 0