Investigation of the Relationship Between Peak Vertical Accelerations and Aerobic Exercise Intensity During Graded Walking and Running in Postmenopausal Women

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

How exercise intensity targets, calibrated according to oxygen consumption, relate to vertical impacts during weight-bearing exercise is currently unknown. The authors investigated the relationship between vertical peaks (VPs) and metabolic equivalents (METs) of oxygen consumption in 82 women during walking and running. The magnitude of VPs, measured using a hip-worn triaxial accelerometer, was derived from recommended aerobic exercise intensity targets. VPs were 0.63 ± 0.18g at the lower recommended absolute exercise intensity target (3 METs) but >1.5g at the upper end of moderate-intensity activities (1.90 ± 1.13g at 6 METs). Multilevel linear regression analyses identified speed and type of locomotion as the strongest independent predictors of VPs, explaining 54% and 11% of variance, respectively. The authors conclude that, in contrast to lower intensities, exercising close to or above the 6-MET threshold generates VPs of osteogenic potential, suggesting this could provide simultaneous benefits to decrease all-cause mortality and osteoporosis risk.

Gil-Rey, Palacios-Samper, and Gorostiaga are with the Studies, Research and Sport Medicine Center (CEIMD), Government of Navarre, Pamplona, Spain. Gil-Rey and Maldonado-Martín are with the Dept. of Physical Education and Sport, Faculty of Education and Sport, Physical Activity and Sport Sciences Section, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. Deere and Tobias are with the Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom. Azpeitia is with the SCReN Spanish Clinical Research Network, BioCruces (Health Research Institute), Bilbao, Spain.

Gil-Rey (erreka.gil@ehu.eus) is corresponding author.
  • Ahola, R., Korpelainen, R., Vainionpää, A., Leppäluoto, J., & Jämsä, T. (2009). Time-course of exercise and its association with 12-month bone changes. BMC Musculoskeletal Disorders, 10(1), 138. PubMed ID: 19909496 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arem, H., Moore, S.C., Patel, A., Hartge, P., De Gonzalez, A.B., Visvanathan, K., . . . Adami, H.O. (2015). Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Internal Medicine, 175(6), 959967. PubMed ID: 25844730 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassey, E., Rothwell, M., Littlewood, J., & Pye, D. (1998). Pre‐ and postmenopausal women have different bone mineral density responses to the same high‐impact exercise. Journal of Bone and Mineral Research, 13(12), 18051813. PubMed ID: 9844097 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beneke, R. (2003). Methodological aspects of maximal lactate steady state—Implications for performance testing. European Journal of Applied Physiology, 89(1), 9599. PubMed ID: 12627312 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billat, V., Dalmay, F., Antonini, M., & Chassain, A. (1994). A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. European Journal of Applied Physiology and Occupational Physiology, 69(3), 196202. PubMed ID: 8001529 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, R.K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European Journal of Cardiovascular Prevention & Rehabilitation, 15(6), 726734. PubMed ID: 19050438 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borer, K.T. (2005). Physical activity in the prevention and amelioration of osteoporosis in women. Sports Medicine, 35(9), 779830. PubMed ID: 16138787 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borer, K.T., Fogleman, K., Gross, M., La New, J.M., & Dengel, D. (2007). Walking intensity for postmenopausal bone mineral preservation and accrual. Bone, 41(4), 713721. PubMed ID: 17686670 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G., Ljunggren, G., & Ceci, R. (1985). The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 54(4), 343349. PubMed ID: 4065121 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clinton, T., & Lanyon, L. (1984). Regulation of bone formation by applied dynamic loads. Journal of Bone and Joint Surgery, American Volume, 66(3), 397402. PubMed ID: 6699056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deere, K., Sayers, A., Rittweger, J., & Tobias, J. (2012). A cross-sectional study of the relationship between cortical bone and high-impact activity in young adult males and females. The Journal of Clinical Endocrinology and Metabolism, 97(10), 37343743. PubMed ID: 22802090 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edvardsen, E., Hansen, B.H., Holme, I.M., Dyrstad, S.M., & Anderssen, S.A. (2013). Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest, 144(1), 241248. PubMed ID: 23287878 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, M.H., Dennison, E.M., Aihie Sayer, A., Fielding, R., & Cooper, C. (2015). Osteoporosis and sarcopenia in older age. Bone, 80, 126130. PubMed ID: 25886902 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts. Sports Medicine, 39(6), 469490. PubMed ID: 19453206 doi:

  • Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., . . . American College of Sports Medicine. (2011). American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 13341359. PubMed ID: 21694556 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Tabar, I., Eclache, J.P., Aramendi, J.F., & Gorostiaga, E.M. (2015). Gas analyzer’s drift leads to systematic error in maximal oxygen uptake and maximal respiratory exchange ratio determination. Frontiers in Physiology, 6(3), 308. PubMed ID: 26578980 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangregorio, L., McGill, S., Wark, J., Laprade, J., Heinonen, A., Ashe, M., . . . Keller, H. (2015). Too fit to fracture: Outcomes of a Delphi consensus process on physical activity and exercise recommendations for adults with osteoporosis with or without vertebral fractures. Osteoporosis International, 26(3), 891910. PubMed ID: 25510579 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giarmatzis, G., Jonkers, I., Wesseling, M., Van Rossom, S., & Verschueren, S. (2015). Loading of hip measured by hip contact forces at different speeds of walking and running. Journal of Bone and Mineral Research, 30(8), 14311440. PubMed ID: 25704538 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Rey, E., Maldonado-Martín, S., Palacios-Samper, N., & Gorostiaga, E.M. (2018). Objectively measured absolute and relative physical activity intensity levels in postmenopausal women. European Journal of Sport Science, 19(4), 539548. PubMed ID: 30409088 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannam, K., Deere, K., Hartley, A., Al-Sari, U., Clark, E., Fraser, W., & Tobias, J. (2017). Habitual levels of higher, but not medium or low, impact physical activity are positively related to lower limb bone strength in older women: Findings from a population-based study using accelerometers to classify impact magnitude. Osteoporosis International, 28(10), 28132822. PubMed ID: 27966105 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatori, M., Hasegawa, A., Adachi, H., Shínozaki, A., Hayashi, R., Okano, H., . . . Murata, K. (1993). The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcified Tissue International, 52(6), 411414. PubMed ID: 8369985 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howley, E.T. (2001). Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6 Suppl.), S364S369. PubMed ID: 11427761 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, J., Nordstrom, A., & Nordstrom, P. (2015). Objectively measured physical activity is associated with parameters of bone in 70-year-old men and women. Bone, 81, 7279. PubMed ID: 26151120 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanis, J.A., Odén, A., McCloskey, E.V., Johansson, H., Wahl, D.A., & Cooper, C. (2012). A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporosis International, 23(9), 22392256. PubMed ID: 22419370 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kannel, W.B., Hjortland, M.C., McNamara, P.M., & Gordon, T. (1976). Menopause and risk of cardiovascular disease: The Framingham study. Annals of Internal Medicine, 85(4), 447452. PubMed ID: 970770 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kujala, U.M., Pietila, J., Myllymaki, T., Mutikainen, S., Fohr, T., Korhonen, I., & Helander, E. (2017). Physical activity: Absolute intensity versus relative-to-fitness-level volumes. Medicine & Science in Sports & Exercise, 49(3), 474481. PubMed ID: 27875497 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, T., Gabriel, H.H., & Kindermann, W. (1999). Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Medicine & Science in Sports & Exercise, 31(9), 13421345. PubMed ID: 10487378 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mezzani, A., Hamm, L.F., Jones, A.M., McBride, P.E., Moholdt, T., Stone, J.A., . . . Williams, M.A. (2013). Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: A joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. European Journal of Preventive Cardiology, 20(3), 442467. PubMed ID: 23104970 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N.E., Strath, S.J., Swartz, A.M., & Cashin, S.E. (2010). Estimating absolute and relative physical activity intensity across age via accelerometry in adults. Journal of Aging and Physical Activity, 18(2), 158170. PubMed ID: 20440028 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, G., Abt, G., Dobson, C., Smith, T., & Ditroilo, M. (2016). Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills. Gait & Posture, 49, 120126. PubMed ID: 27400020 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neugebauer, J.M., Collins, K.H., & Hawkins, D.A. (2014). Ground reaction force estimates from ActiGraph GT3X hip accelerations. PLoS One, 9(6), e99023. PubMed ID: 24914946 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozemek, C., Cochran, H.L., Kaminsky, L.A., Strath, S.J., & Byun, W. (2013). Estimating relative intensity using individualized accelerometer cutpoints: The importance of fitness level. BMC Medical Research Methodology, 13(1), 53. PubMed ID: 23547769 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., . . . González‐Badillo, J.J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724735. PubMed ID: 27038416 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, B.K. (2013). Muscle as a secretory organ. Comprehensive Physiology, 3(3), 13371362. PubMed ID: 23897689 doi:

  • Physical Activity Guidelines Advisory Committee. (2018). Physical activity guidelines advisory committee scientific report. Washington, DC: U.S. Department of Health and Human Services.

    • Search Google Scholar
    • Export Citation
  • Riebe, D., Ehrman, J.K., Liguori, G., & Magal, M. (2017). ACSM’s guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer.

    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., & Stiles, V.H. (2012). Accelerometer counts and raw acceleration output in relation to mechanical loading. Journal of Biomechanics, 45(3), 448454. PubMed ID: 22218284 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, K., & Neptune, R.R. (2006). Differences in muscle function during walking and running at the same speed. Journal of Biomechanics, 39(11), 20052013. PubMed ID: 16129444 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S.J., Morgan, M.D., Scott, S., Walters, D., & Hardman, A.E. (1992). Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax, 47(12), 10191024. PubMed ID: 1494764 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stansfield, B.W., & Nicol, A.C. (2002). Hip joint contact forces in normal subjects and subjects with total hip prostheses: Walking and stair and ramp negotiation. Clinical Biomechanics, 17(2), 130139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiles, V.H., Metcalf, B.S., Knapp, K.M., & Rowlands, A.V. (2017). A small amount of precisely measured high-intensity habitual physical activity predicts bone health in pre- and post-menopausal women in UK Biobank. International Journal of Epidemiology, 46(6), 18471856. PubMed ID: 29106579 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, J.M., Welk, G.J., & Beyler, N.K. (2011). Physical activity in US adults: Compliance with the Physical Activity Guidelines for Americans. American Journal of Preventive Medicine, 40(4), 454461. PubMed ID: 21406280 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urhausen, A., Weiler, B., Coen, B., & Kindermann, W. (1994). Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic threshold. European Journal of Applied Physiology and Occupational Physiology, 69(1), 1620. PubMed ID: 7957150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vainionpaa, A., Korpelainen, R., Sievanen, H., Vihriala, E., Leppaluoto, J., & Jamsa, T. (2007). Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone, 40(3), 604611. PubMed ID: 17140871 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vainionpää, A., Korpelainen, R., Vihriälä, E., Rinta-Paavola, A., Leppäluoto, J., & Jämsä, T. (2006). Intensity of exercise is associated with bone density change in premenopausal women. Osteoporosis International, 17(3), 455463. PubMed ID: 16404492 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C.P., Wai, J.P.M., Tsai, M.K., Yang, Y.C., Cheng, T.Y.D., Lee, M., . . . Wu, X. (2011). Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. The Lancet, 378(9798), 12441253. PubMed ID: 21846575 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitfield, G.P., Kohrt, W.M., Pettee Gabriel, K.K., Rahbar, M.H., & Kohl, H.W., 3rd. (2015). Bone mineral density across a range of physical activity volumes: NHANES 2007-2010. Medicine & Science in Sports & Exercise, 47(2), 326334. PubMed ID: 24870584 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters-Stone, K.M., Dobek, J., Nail, L., Bennett, J.A., Leo, M.C., Naik, A., . . . Schwartz, A. (2011). Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: A randomized, controlled trial. Breast Cancer Research and Treatment, 127(2), 447456. PubMed ID: 21424279 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 220 220 143
Full Text Views 2 2 2
PDF Downloads 3 3 3