The Physiological, Physical, and Biomechanical Demands of Walking Football: Implications for Exercise Prescription and Future Research in Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $189.00

The aim of this investigation was to profile the physiological, physical, and biomechanical responses during walking football. A total of 17 male participants (aged 66 ± 6 years) participated. Heart rate; blood lactate; accelerometer variables (biomechanical load [PlayerLoad], changes of direction); and rating of perceived exertion were measured. Participants mean percentage of maximum heart rate was 76 ± 6% during the sessions, with rating of perceived exertion across all sessions at 13 ± 2. Blood lactate increased by ∼157% from presession (1.24 ± 0.4 mmol/L) to postsession (3.19 ± 1.7 mmol/L; p ≤ .0005). PlayerLoad values of 353 ± 67 arbitrary units were observed, as well as ∼100 changes of direction per session. In conclusion, walking football is a moderate- to vigorous-intensity activity. The longitudinal health benefits of walking football remain to be elucidated, particularly on bone health, cardiovascular fitness, and social and mental well-being.

The authors are with the School of Human and Health Sciences, University of Huddersfield, Huddersfield, West Yorkshire, United Kingdom.

Harper (L.Harper@hud.ac.uk) is corresponding author.
  • Abt, G., Bray, J., Myers, T., & Benson, A.C. (2019). Walking cadence required to elicit criterion moderate-intensity physical activity is moderated by fitness status. Journal of Sports Sciences, 37(17), 1989–1995. PubMed ID: 31064255 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, J.T., Bruce-Low, S., & Sammut, L. (2015). The impact of 12 weeks walking football on health and fitness in males over 50 years of age. BMJ Open Sport & Exercise Medicine, 1(1), bmjsem-2015-000048. PubMed ID: 27900112 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, G., & Nevill, A.M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217–238. PubMed ID: 9820922 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bangsbo, J., Hansen, P.R., Dvorak, J., & Krustrup, P. (2015). Recreational football for disease prevention and treatment in untrained men: A narrative review examining cardiovascular health, lipid profile, body composition, muscle strength and functional capacity. British Journal of Sports Medicine, 49(9), 568–576. PubMed ID: 25878072 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, J.R., Officer, A., de Carvalho, I.A., Sadana, R., Pot, A.M., Michel, J.-P., . . . Chatterji, S. (2016). The world report on ageing and health: A policy framework for healthy ageing. The Lancet, 387(10033), 2145–2154. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. PubMed ID: 7154893

    • Search Google Scholar
    • Export Citation
  • Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F., . . . Zuber, S. (2013). Data resource profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). International Journal of Epidemiology, 42(4), 992–1001. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, L.J., Ball, K., & Aughey, R.J. (2011). The reliability of minimaxX accelerometers for measuring physical activity in Australian Football. International Journal of Sports Physiology and Performance, 6(3), 311–321. PubMed ID: 21911857 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartee, G.D., Hepple, R.T., Bamman, M.M., & Zierath, J.R. (2016). Exercise promotes healthy aging of skeletal muscle. Cell Metabolism, 23(6), 1034–1047. PubMed ID: 27304505 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casamichana, D., Castellano, J., & Dellal, A. (2013). Influence of different training regimes on physical and physiological demands during small-sided soccer games: Continuous vs. intermittent format. Journal of Strength and Conditioning Research, 27(3), 690–697. PubMed ID: 22648136

    • Search Google Scholar
    • Export Citation
  • Chambers, R., Gabbett, T.J., Cole, M.H., & Beard, A. (2015). The use of wearable microsensors to quantify sport-specific movements. Sports Medicine, 45(7), 1065–1081. PubMed ID: 25834998 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P.-K., Zhao, Y., Liu, J.-D., & Quach, B. (2015). A brief note on the validity and reliability of the rating of perceived exertion scale in monitoring exercise intensity among Chinese older adults in Hong Kong. Perceptual and Motor Skills, 121(3), 805–809. PubMed ID: 26595201 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., . . . Zamboni, M. (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on Sarcopenia in older people. Age and Ageing, 39(4), 412–423. PubMed ID: 20392703 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, K., Drust, B., Murphy, R., Pringle, A., & Richardson, D. (2016). The challenge and impact of engaging hard-to-reach populations in regular physical activity and health behaviours: An examination of an English Premier League “Football in the Community” men’s health programme. Public Health, 135, 14–22. PubMed ID: 27003668 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrucci, L., & Fabbri, E. (2018). Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews Cardiology, 15(9), 505–522. PubMed ID: 30065258 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, K.R., Stathi, A., McKenna, J., & Davis, M.G. (2007). Physical activity and mental well-being in older people participating in the Better Ageing Project. European Journal of Applied Physiology, 100(5), 591–602. PubMed ID: 17285318 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gába, A., Cuberek, R., Svoboda, Z., Chmelík, F., Pelclová, J., Lehnert, M., & Frömel, K. (2016). The effect of brisk walking on postural stability, bone mineral density, body weight and composition in women over 50 years with a sedentary occupation: A randomized controlled trial. BMC Women’s Health, 16(1), 63. PubMed ID: 31647013 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.-M., . . . Swain, D.P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. PubMed ID: 21694556 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Park, S.W., Harris, T.B., Kritchevsky, S.B., Nevitt, M., Schwartz, A.V., . . . Newman, A.B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(10), 1059–1064. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagman, M., Helge, E.W., Hornstrup, T., Fristrup, B., Nielsen, J.J., Jørgensen, N.R., . . . Krustrup, P. (2018). Bone mineral density in lifelong trained male football players compared with young and elderly untrained men. Journal of Sport and Health Science, 7(2), 159–168. PubMed ID: 30356456 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamer, M., Muniz Terrera, G., & Demakakos, P. (2018). Physical activity and trajectories in cognitive function: English longitudinal study of ageing. Journal of Epidemiology and Community Health, 72(6), 477–483. PubMed ID: 29434025 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, S., & Jones, A. (2015). Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. British Journal of Sports Medicine, 49(11), 710–715. PubMed ID: 25601182 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, N.H., Nimphius, S., Rantalainen, T., Ireland, A., Siafarikas, A., & Newton, R.U. (2017). Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. Journal of Musculoskeletal and Neuronal Interactions, 17(3), 114–139. PubMed ID: 28860414

    • Search Google Scholar
    • Export Citation
  • Heil, D.P., Newton, R.U., & Salle, D.D.A. (2018). Characterizing the metabolic intensity and cardiovascular demands of walking football in Southeast Asian women. International Journal of Physical Education, Fitness and Sports, 7(3), 12–23. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K., Gray, C.M., Maclean, A., Smillie, S., Bunn, C., & Wyke, S. (2014). Do weight management programmes delivered at professional football clubs attract and engage high risk men? A mixed-methods study. BMC Public Health, 14(1), 50. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izadi, M.R., Ghardashi Afousi, A., Asvadi Fard, M., & Babaee Bigi, M.A. (2018). High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. Journal of Physiology and Biochemistry, 74(1), 47–55. PubMed ID: 29214526 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstoft, K., Clark, M.A., Jakobsen, I., Müller, I.A., Pedersen, B.K., Solomon, T.P.J., & Ried-Larsen, M. (2017). The effects of 2 weeks of interval vs. continuous walking training on glycaemic control and whole-body oxidative stress in individuals with type 2 diabetes: A controlled, randomised, crossover trial. Diabetologia, 60(3), 508–517. PubMed ID: 27942800 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, W.E., Janz, K.F., Powell, K.E., Campbell, W.W., Jakicic, J.M., Troiano, R.P., . . . Piercy, K.L. (2019). Daily step counts for measuring physical activity exposure and its relation to health. Medicine & Science in Sports & Exercise, 51(6), 1206–1212. PubMed ID: 31095077 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamont, E., Harris, J., McDonald, G., Kerin, T., & Dickens, G.L. (2017). Qualitative investigation of the role of collaborative football and walking football groups in mental health recovery. Mental Health and Physical Activity, 12, 116–123. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lancaster, G.I., & Febbraio, M.A. (2014). The immunomodulating role of exercise in metabolic disease. Trends in Immunology, 35(6), 262–269. PubMed ID: 24680647 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblanc, A.D., Schneider, V.S., Evans, H.J., Engelbretson, D.A., & Krebs, J.M. (2009). Bone mineral loss and recovery after 17 weeks of bed rest. Journal of Bone and Mineral Research, 5(8), 843–850. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loadman, A. (2017). “He’s running, ref!” an ethnographic study of walking football. Soccer & Society, 20(4), 675–692. doi:

  • Malone, J.J., Lovell, R., Varley, M.C., & Coutts, A.J. (2017). Unpacking the black box: Applications and considerations for using GPS devices in sport. International Journal of Sports Physiology and Performance, 12(s2), S2-18–S2-26. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansfield, A., Wong, J.S., Bryce, J., Knorr, S., & Patterson, K.K. (2015). Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Physical Therapy, 95(5), 700–709. PubMed ID: 25524873 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuki, S., Mori, M., Tabara, Y., Sakurai, A., Hashimoto, S., Morikawa, M., . . . Nose, H. (2015). The factors affecting adherence to a long-term interval walking training program in middle-aged and older people. Journal of Applied Physiology, 118(5), 595–603. PubMed ID: 25539937 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEwan, G., Buchan, D., Cowan, D., Arthur, R., Sanderson, M., & Macrae, E. (2019). Recruiting older men to walking football: A pilot feasibility study. Explore, 15(3), 206–214. PubMed ID: 30639074 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaren, S.J., Macpherson, T.W., Coutts, A.J., Hurst, C., Spears, I.R., & Weston, M. (2018). The relationships between internal and external measures of training load and intensity in team sports: A meta-analysis. Sports Medicine, 48(3), 641–658. PubMed ID: 29288436 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M., Nevill, A., Neville, C., Biddle, S., & Hardman, A. (2002). Accumulating brisk walking for fitness, cardiovascular risk, and psychological health. Medicine & Science in Sports & Exercise, 34(9), 1468–1474. PubMed ID: 12218740 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M.H., Nevill, A.M., Murtagh, E.M., & Holder, R.L. (2007). The effect of walking on fitness, fatness and resting blood pressure: A meta-analysis of randomised, controlled trials. Preventive Medicine, 44(5), 377–385. PubMed ID: 17275896 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemoto, K., Gen-no, H., Masuki, S., Okazaki, K., & Nose, H. (2007). Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clinic Proceedings, 82(7), 803–811. PubMed ID: 17605959 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolella, D.P., Torres-Ronda, L., Saylor, K.J., & Schelling, X. (2018). Validity and reliability of an accelerometer-based player tracking device. PLoS One, 13(2), e0191823. PubMed ID: 29420555 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, Y., Schoene, D., & Lord, S.R. (2017). Step training improves reaction time, gait and balance and reduces falls in older people: A systematic review and meta-analysis. British Journal of Sports Medicine, 51(7), 586–593. PubMed ID: 26746905 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Page, R.M., Marrin, K., Brogden, C.M., & Greig, M. (2015). Biomechanical and physiological response to a contemporary soccer match-play simulation. Journal of Strength and Conditioning Research, 29(10), 2860–2866. PubMed ID: 25875368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palombaro, K.M. (2005). Effects of walking-only interventions on bone mineral density at various skeletal sites: A meta-analysis. Journal of Geriatric Physical Therapy, 28(3), 102–107. PubMed ID: 16386172

    • Search Google Scholar
    • Export Citation
  • Pringle, A., Zwolinsky, S., McKenna, J., Daly-Smith, A., Robertson, S., & White, A. (2013). Delivering men’s health interventions in English Premier League football clubs: Key design characteristics. Public Health, 127(8), 716–726. PubMed ID: 23870844 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randers, M.B., Nielsen, J.J., Bangsbo, J., & Krustrup, P. (2014). Physiological response and activity profile in recreational small-sided football: No effect of the number of players: Organizing effective recreational football. Scandinavian Journal of Medicine & Science in Sports, 24, 130–137. PubMed ID: 24944137 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randers, M.B., Nybo, L., Petersen, J., Nielsen, J.J., Christiansen, L., Bendiksen, M., . . . Krustrup, P. (2010). Activity profile and physiological response to football training for untrained males and females, elderly and youngsters: Influence of the number of players: Physical demands of recreational football. Scandinavian Journal of Medicine & Science in Sports, 20, 14–23. PubMed ID: 20149143 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randers, M.B., Ørntoft, C., Hagman, M., Nielsen, J.J., & Krustrup, P. (2018). Movement pattern and physiological response in recreational small-sided football–effect of number of players with a fixed pitch size. Journal of Sports Sciences, 36(13), 1549–1556. PubMed ID: 29132263 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddy, P., Dias, I., Holland, C., Campbell, N., Nagar, I., Connolly, L., . . . Hubball, H. (2017). Walking football as sustainable exercise for older adults–a pilot investigation. European Journal of Sport Science, 17(5), 638–645. PubMed ID: 28316258 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reljic, D., Lampe, D., Wolf, F., Zopf, Y., Herrmann, H.J., & Fischer, J. (2019). Prevalence and predictors of dropout from high‐intensity interval training in sedentary individuals: A meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 29(9), 1288–1304. PubMed ID: 31050061 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, B.A. (2015). Monitoring your exercise intensity. ACSM’s Health & Fitness Journal, 19(4), 3–4. PubMed ID: 31616937

  • Santos, L., Elliott-Sale, K.J., & Sale, C. (2017). Exercise and bone health across the lifespan. Biogerontology, 18(6), 931–946. PubMed ID: 29052784 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawers, A., & Bhatt, T. (2018). Neuromuscular determinants of slip-induced falls and recoveries in older adults. Journal of Neurophysiology, 120(4), 1534–1546. PubMed ID: 29995607 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shigematsu, R., Ueno, L.M., Nakagaichi, M., Nho, H., & Tanaka, K. (2004). Rate of perceived exertion as a tool to monitor cycling exercise intensity in older adults. Journal of Aging and Physical Activity, 12(1), 3–9. PubMed ID: 15211017 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Søgaard, D., Lund, M.T., Scheuer, C.M., Dehlbaek, M.S., Dideriksen, S.G., Abildskov, C.V., . . . Helge, J.W. (2018). High-intensity interval training improves insulin sensitivity in older individuals. Acta Physiologica, 222(4), e13009. PubMed ID: 29197155 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparling, P.B., Howard, B.J., Dunstan, D.W., & Owen, N. (2015). Recommendations for physical activity in older adults. British Medical Journal, 350, h100. PubMed ID: 25608694 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, J.A., Corso, P.S., Finkelstein, E.A., & Miller, T.R. (2006). The costs of fatal and non-fatal falls among older adults. Injury Prevention, 12(5), 290–295. PubMed ID: 17018668 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., Monahan, K.D., & Seals, D.R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. PubMed ID: 11153730 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Han, H., Aguiar, E.J., Barreira, T.V., Schuna, J.M., Jr., Kang, M., & Rowe, D.A. (2018). How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. British Journal of Sports Medicine, 52(12), 776–788. PubMed ID: 29858465 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, C.H., & Robling, A.G. (2003). Designing exercise regimens to increase bone strength. Exercise and Sport Sciences Reviews, 31(1), 45–50. PubMed ID: 12562170 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weerdesteyn, V., Rijken, H., Geurts, A.C.H., Smits-Engelsman, B.C.M., Mulder, T., & Duysens, J. (2006). A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly. Gerontology, 52(3), 131–141. PubMed ID: 16645293 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A.D., & Macfarlane, N.G. (2015). Analysis of international competition and training in men’s field hockey by global positioning system and inertial sensor technology. Journal of Strength and Conditioning Research, 29(1), 137–143. PubMed ID: 24978837

    • Search Google Scholar
    • Export Citation
  • Wyckelsma, V.L., Levinger, I., McKenna, M.J., Formosa, L.E., Ryan, M.T., Petersen, A.C., . . . Murphy, R.M. (2017). Preservation of skeletal muscle mitochondrial content in older adults: Relationship between mitochondria, fibre type and high-intensity exercise training: High-intensity training in elderly humans. The Journal of Physiology, 595(11), 3345–3359. PubMed ID: 28251664 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyke, S., Bunn, C., Andersen, E., Silva, M.N., van Nassau, F., McSkimming, P., . . . van der Ploeg, H.P. (2019). The effect of a programme to improve men’s sedentary time and physical activity: The European Fans in Training (EuroFIT) randomised controlled trial. PLOS Medicine, 16(2), e1002736. PubMed ID: 30721231 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 232 232 52
Full Text Views 5 5 1
PDF Downloads 2 2 0