Potential Motor Benefits of Visual Feedback of Error Reduction for Older Adults

in Journal of Aging and Physical Activity
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

This study investigated how visual feedback of virtual error reduction (ER) modified the visuomotor performance of older adults with limited attentional capacity. Error structures of young and older adults during birhythmic force tracking were contrasted when the visualized error size was exact or half of the actual size. As compared with full-size error feedback, ER feedback improved the force tracking symmetry of older adults, but undermined that of young adults. Extended Poincaré analysis revealed that young adults presented greater short-term error variability (mean value of κ-lagged SD1 of the error signal) with ER feedback, which led to a smaller mean value of κ-lagged SD1 of the error signal for older adults. The ER-related task improvement of the older adults was negatively correlated with the size of the tracking errors with real error feedback and positively correlated with ER-related increases in force spectral symmetry and decreases in the mean value of κ-lagged SD1 of the error signal. ER feedback could advance visuomotor tasks for older adults who perform worse with full-size visual feedback by the enhancement of self-efficacy and stabilization of negative internal feedback.

Hwang and Tsai are with the Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Hwang and Hu are with the Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Huang is with the Department of Management Information System, National Chung Cheng University, Chiayi, Taiwan. Chen is with the Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan; and the Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan.

Chen (yiching@csmu.edu.tw) is corresponding author.
  • Abdollahi, F., Case Lazarro, E.D., Listenberger, M., Kenyon, R.V., Kovic, M., Bogey, R.A., . . . Hedeker, D. (2014). Error augmentation enhancing arm recovery in individuals with chronic stroke: A randomized crossover design. Neurorehabilitation and Neural Repair, 28(2), 120128. PubMed ID: 23929692 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almeida, R., Barbosa, J., & Compte, A. (2015). Neural circuit basis of visuo-spatial working memory precision: A computational and behavioral study. Journal of Neurophysiology, 114(3), 18061818. PubMed ID: 26180122 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, M., Li, X., Huang, C., Hou, Z., Qiu, W., & Wang, W. (2014). Significant improvement in dynamic visual acuity after cataract surgery: A promising potential parameter for functional vision. PLoS One, 9(12), e115812. PubMed ID: 25541959 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G.R. (2008). Cognitive processes involved in smooth pursuit eye movements. Brain and Cognition, 68(3), 309326. PubMed ID: 18848744 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baron, A. (1985). Measurement scales and the age-complexity hypothesis. Experimental Aging Research, 11(3–4), 193199. PubMed ID: 4076312 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baweja, H.S., Patel, B.K., Martinkewiz, J.D., Vu, J., & Christou, E.A. (2009). Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Experimental Brain Research, 197(1), 3547. PubMed ID: 19544059 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birren, J.E., & Fisher, L.M. (1995). Aging and speed of behavior: Possible consequences for psychological functioning. Annual Review of Psychology, 46, 329353. PubMed ID: 7872732 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchard, A.E., Corriveau, H., & Milot, M.H. (2015). Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors. Frontiers in Systems Neuroscience, 9, 52. PubMed ID: 25873868 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.C., Lin, L.L., Lin, Y.T., Hu, C.L., & Hwang, I.S. (2017a). Variations in static force control and motor unit behavior with error amplification feedback in the elderly. Frontiers in Human Neuroscience, 11, 538. PubMed ID: 29167637 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.C., Lin, Y.T., Chang, G.C., & Hwang, I.S. (2017b). Perceptual influences of error size on voluntary force control during a compound sinusoidal force task. Human Movement Science, 56(Pt. B), 4653. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corporaal, S.H.A., Gooijers, J., Chalavi, S., Cheval, B., Swinnen, S.P., & Boisgontier, M.P. (2017). Neural predictors of motor control and impact of visuo-proprioceptive information in youth. Human Brain Mapping, 38(11), 56285647. PubMed ID: 28782899 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Grosbois, J., & Tremblay, L. (2016). Quantifying online visuomotor feedback utilization in the frequency domain. Behavior Research Methods, 48(4), 16531666. PubMed ID: 26542974 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dive, S., Rouland, J.F., Lenoble, Q., Szaffarczyk, S., McKendrick, A.M., & Boucart, M. (2016). Impact of peripheral field loss on the execution of natural actions: A study with glaucomatous patients and normally sighted people. Journal of Glaucoma, 25(10), e889e896. PubMed ID: 26950583 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterbrook, J.A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66(3), 183201. PubMed ID: 13658305 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. PubMed ID: 17695343 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, M., Jacono, F.J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K.A., . . . Dick, TE. (2012). A method for analyzing temporal patterns of variability of a time series from Poincare plots. Journal of Applied Physiology, 113(2), 297306. PubMed ID: 22556398 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301. PubMed ID: 19559644 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaveau, V., Prablanc, C., Laurent, D., Rossetti, Y., & Priot, A.E. (2014). Visuomotor adaptation needs a validation of prediction error by feedback error. Frontiers in Human Neuroscience, 8, 880. PubMed ID: 25408644 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Levy, B.R., & Wei, J.Y. (1999). The power of ageism on physical function of older persons: Reversibility of age-related gait changes. Journal of the American Geriatrics Society, 47(11), 13461349. PubMed ID: 10573445 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, K., Mukai, N., & Sawa, T. (2015). Poincaré analysis of the electroencephalogram during sevoflurane anesthesia. Clinical Neurophysiology, 126(2), 404411. PubMed ID: 24969375 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.Y., Su, J.H., & Hwang, I.S. (2014). Rate control and quality assurance during rhythmic force tracking. Behavioural Brain Research, 259, 186195. PubMed ID: 24269498 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, I.S., Hu, C.L., Yang, Z.R., Lin, Y.T., & Chen, Y.C. (2019). Improving precision force control with low-frequency error amplification feedback: Behavioral and neurophysiological mechanisms. Frontiers in Physiology, 10, 131. PubMed ID: 30842742 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, I.S., Lin, Y.T., Huang, W.M., Yang, Z.R., Hu, C.L., & Chen, Y.C. (2017). Alterations in neural control of constant isometric contraction with the size of error feedback. PLoS One, 12(1), e0170824. PubMed ID: 28125658 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., & Kitagawa, J. (2005). Error processing in patients with Alzheimer’s disease. Pathophysiology, 12(2), 97101. PubMed ID: 16023559 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, D.M., & Christou, E.A. (2011). Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Experimental Brain Research, 213(4), 351361. PubMed ID: 21800256 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenway, L.C., Bisset, L.M., & Kavanagh, J.J. (2016). Visually guided targeting enhances bilateral force variability in healthy older adults. Neurobiology of Aging, 37, 127137. PubMed ID: 26521134 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolev, V., Falkenstein, M., & Yordanova, J. (2006). Motor-response generation as a source of aging-related behavioural slowing in choice-reaction tasks. Neurobiology of Aging, 27(11), 17191730. PubMed ID: 16246465 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krampe, R.T., Engbert, R., & Kliegl, R. (2001). Age-specific problems in rhythmic timing. Psychology and Aging, 16(1), 1230. PubMed ID: 11302361 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhns, A.B., Dombert, P.L., Mengotti, P., Fink, G.R., & Vossel, S. (2017). Spatial attention, motor intention, and Bayesian cue predictability in the human brain. Journal of Neuroscience, 37(31), 53345344. PubMed ID: 28450541 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manohar, S.G., Chong, T.T., Apps, M.A., Batla, A., Stamelou, M., Jarman, P.R., . . . Bhatia, K.P. (2015). Reward pays the cost of noise reduction in motor and cognitive control. Current Biology, 25(13), 17071716. PubMed ID: 26096975 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manohar, S.G., Muhammed, K., Fallon, S.J., & Husain, M. (2019). Motivation dynamically increases noise resistance by internal feedback during movement. Neuropsychologia, 123, 1929. PubMed ID: 30005926 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S.P., McAuley, E., Satariano, W.A., Kealey, M., & Prohaska, T.R. (2012). Physical activity and functional limitations in older adults: The influence of self-efficacy and functional performance. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 67(3), 354361. PubMed ID: 22473023 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neely, K.A., Samimy, S., Blouch, S.L., Wang, P., Chennavasin, A., Diaz, M.T., . . . Dennis, N.A. (2017). Memory-guided force control in healthy younger and older adults. Experimental Brain Research, 235(8), 24732482. PubMed ID: 28510782 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onushko, T., Kim, C., & Christou, E.A. (2014). Reducing task difficulty during practice improves motor learning in older adults. Experimental Gerontology, 57, 168174. PubMed ID: 24909352 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubinstein, N.J., Anderson, A.J., Ma-Wyatt, A., Walland, M.J., & McKendrick, A.M. (2014). The effects of ageing and visual field loss on pointing to visual targets. PLoS One, 9(5), e97190. PubMed ID: 24836047 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satti, R., Abid, N.U., Bottaro, M., De Rui, M., Garrido, M., Raoufy, M.R., . . . Montagnese, S. (2019). The application of the extended Poincaré plot in the analysis of physiological variabilities. Frontiers in Physiology, 10, 116. PubMed ID: 30837892 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider-Helmert, D., & Spinweber, C.L. (1986). Evaluation of L-tryptophan for treatment of insomnia: A review. Psychopharmacology, 89(1), 17. PubMed ID: 3090582 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharp, I., Huang, F., & Patton, J. (2011). Visual error augmentation enhances learning in three dimensions. Journal of NeuroEngineering and Rehabilitation, 8, 52. PubMed ID: 21888657 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiels, K., & Hawk, L.W., Jr. (2010). Self-regulation in ADHD: The role of error processing. Clinical Psychology Review, 30(8), 951961. PubMed ID: 20659781 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., Vaillancourt, D.E., & Newell, K.M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 17081718. PubMed ID: 11024063 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sosnoff, J.J., & Newell, K.M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception and Psychophysics, 67(2), 335344. PubMed ID: 15971695 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, S., Pouthas, V., & Wearden, J.H. (2001). Temporal control of rhythmic performance: A comparison between young and old adults. Experimental Aging Research, 27(1), 83102. PubMed ID: 11205531 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welford, A.T. (1984). Between bodily changes and performance: Some possible reasons for slowing with age. Experimental Aging Research, 10(2), 7388. PubMed ID: 6389152 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willemssen, R., Müller, T., Schwarz, M., Hohnsbein, J., & Falkenstein, M. (2008). Error processing in patients with Parkinson’s disease: The influence of medication state. Journal of Neural Transmission, 115(3), 461468. PubMed ID: 18250959 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, J.K., Proffitt, D.R., & Epstein, W. (2010). When and how are spatial perceptions scaled? Journal of Experimental Psychology: Human Perception and Performance, 36(5), 11531160. PubMed ID: 20731519 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, P.A., Beiser, A., Elias, M.F., Au, R., Vasan, R.S., & Seshadri, S. (2007). Relation of obesity to cognitive function: Importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Current Alzheimer Research, 4(2), 111116. PubMed ID: 17430232 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M., & Miall, R.C. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 12651279. PubMed ID: 12662535 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, D.L., Wyma, J.M., Yund, E.W., Herron, T.J., & Reed, B. (2015). Age-related slowing of response selection and production in a visual choice reaction time task. Frontiers in Human Neuroscience, 9, 193. PubMed ID: 25954175 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., Chiviacowsky, S., & Lewthwaite, R. (2012). Altering mindset can enhance motor learning in older adults. Psychology and Aging, 27(1), 1421. PubMed ID: 21988153 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 168 168 28
Full Text Views 3 3 0
PDF Downloads 3 3 0