Associations of Light, Moderate to Vigorous, and Total Physical Activity With the Prevalence of Metabolic Syndrome in 4,652 Community-Dwelling 70-Year-Olds: A Population-Based Cross-Sectional Study

in Journal of Aging and Physical Activity
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

In this cross-sectional study, the authors investigated the associations of objectively measured physical activity (PA) with the prevalence of metabolic syndrome (MetS) in older adults. Accelerometer-derived light-intensity PA, moderate to vigorous PA, and steps per day were measured in (N = 4,652) 70-year-olds in Umeå, Sweden, during May 2012–November 2019. The MetS was assessed according to the American Heart Association/ National Heart, Lung and Blood Institute criteria. The prevalence of MetS was 49.3%. Compared with the reference, the odds ratios for MetS in increasing quartiles of light-intensity PA were 0.91 (0.77–1.09), 0.75 (0.62–0.89), and 0.66 (0.54–0.80). For moderate to vigorous PA, the corresponding odds ratios were 0.79 (0.66–0.94), 0.67 (0.56–0.80), and 0.56 (0.46–0.67). For steps per day, the odds ratios were 0.65 (0.55–0.78), 0.55 (0.46–0.65), and 0.45 (0.36–0.55). In summary, this study shows that greater amounts of PA, regardless of intensity, are associated with lower odds of MetS. With the limitation of being an observational study, these findings may have implications for the prevention of MetS in older adults.

Ballin and P. Nordström are with the Unit of Geriatric Medicine, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden. Ballin and A. Nordström are with the Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden. A. Nordström is also with the School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway.

Ballin (marcel.ballin@umu.se) is corresponding author.
  • Alberti, K.G., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., … International Association for the Study of Obesity. (2009). Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 16401645. PubMed ID: 19805654 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amagasa, S., Machida, M., Fukushima, N., Kikuchi, H., Takamiya, T., Odagiri, Y., & Inoue, S. (2018). Is objectively measured light-intensity physical activity associated with health outcomes after adjustment for moderate-to-vigorous physical activity in adults? A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 65. PubMed ID: 29986718 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnardottir, N.Y., Koster, A., Van Domelen, D.R., Brychta, R.J., Caserotti, P., Eiriksdottir, G., … Sveinsson, T. (2013). Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: Age, gene/environment susceptibility-Reykjavik study. Age and Ageing, 42(2), 222229. PubMed ID: 23117467 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aspvik, N.P., Viken, H., Zisko, N., Ingebrigtsen, J.E., Wisløff, U., & Stensvold, D. (2016). Are older adults physically active enough—A matter of assessment method? The generation 100 study. PLoS One, 11(11), e0167012. PubMed ID: 27893785 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atienza, A.A., Moser, R.P., Perna, F., Dodd, K., Ballard-Barbash, R., Troiano, R.P., & Berrigan, D. (2011). Self-reported and objectively measured activity related to biomarkers using NHANES. Medicine & Science in Sports & Exercise, 43(5), 815821. PubMed ID: 20962693 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, M., Palmer, J., Valtos, J., Iasiello, C., & Sowers, J. (2006). Metabolic syndrome in the elderly. Current Diabetes Reports, 6(1), 6471. PubMed ID: 16522283 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Mandrichenko, O., Helbostadt, J.L., & Skelton, D.A. (2014). Associations between objectively-measured sedentary behaviour and physical activity with bone mineral density in adults and older adults, the NHANES study. Bone, 64, 254262. PubMed ID: 24735973 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. PubMed ID: 20581716 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, R., Hardy, R., Aihie Sayer, A., Ben-Shlomo, Y., Birnie, K., Cooper, C., … Team, H.S. (2011). Age and gender differences in physical capability levels from mid-life onwards: The harmonisation and meta-analysis of data from eight UK cohort studies. PLoS One, 6(11), e27899. PubMed ID: 22114723 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornier, M.-A., Dabelea, D., Hernandez, T.L., Lindstrom, R.C., Steig, A.J., Stob, N.R., … Eckel, R.H. (2008). The metabolic syndrome. Endocrine Reviews, 29(7), 777822. PubMed ID: 18971485 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Münkemüller, T. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 2746. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, R.H., Grundy, S.M., & Zimmet, P.Z. (2005). The metabolic syndrome. The Lancet, 365(9468), 14151428. doi:

  • Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B.H., Jefferis, B., Fagerland, M.W., … Lee, I.M. (2019). Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. British Medical Journal, 366, l4570. PubMed ID: 31434697 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figueiró, T.H., Arins, G.C.B., Santos, C.E.S.D., Cembranel, F., Medeiros, P.A., d’Orsi, E., & Rech, C.R. (2019). Association of objectively measured sedentary behavior and physical activity with cardiometabolic risk markers in older adults. PLoS One, 14(1), e0210861. PubMed ID: 30657795 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, G.F., Landolfo, C., Niebauer, J., Ozemek, C., Arena, R., & Lavie, C.J. (2018). Promoting physical activity and exercise: JACC health promotion series. Journal of the American College of Cardiology, 72(14), 16221639. PubMed ID: 30261965 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, E.S., & Li, C. (2008). Metabolic syndrome and health-related quality of life among U.S. adults. Annals of Epidemiology, 18(3), 165171. PubMed ID: 18280918 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, E.S., Li, C., & Sattar, N. (2008). Metabolic syndrome and incident diabetes: Current state of the evidence. Diabetes Care, 31(9), 18981904. PubMed ID: 18591398 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777781. PubMed ID: 9588623 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Füzéki, E., Engeroff, T., & Banzer, W. (2017). Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sports Medicine, 47(9), 17691793. PubMed ID: 28393328 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorman, E., Hanson, H.M., Yang, P.H., Khan, K.M., Liu-Ambrose, T., & Ashe, M.C. (2014). Accelerometry analysis of physical activity and sedentary behavior in older adults: A systematic review and data analysis. European Review of Aging and Physical Activity, 11(1), 3549. PubMed ID: 24765212 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundy, S.M., Cleeman, J.I., Daniels, S.R., Donato, K.A., Eckel, R.H., Franklin, B.A., … Smith, S.C. Jr. (2005). Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation, 112(17), 27352752. PubMed ID: 16157765 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallal, P.C., Andersen, L.B., Bull, F.C., Guthold, R., Haskell, W., Ekelund, U., & Lancet Physical Activity Series Working Group. (2012). Global physical activity levels: Surveillance progress, pitfalls, and prospects. The Lancet, 380(9838), 247257. PubMed ID: 22818937 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzig, K.H., Ahola, R., Leppäluoto, J., Jokelainen, J., Jämsä, T., & Keinänen-Kiukaanniemi, S. (2014). Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. International Journal of Obesity, 38(8), 10891096. PubMed ID: 24285336 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, K.M., Sun, J.L., Thomas, L., Bales, C.W., Califf, R.M., Yates, T., … Kraus, W.E. (2014). Impact of baseline physical activity and diet behavior on metabolic syndrome in a pharmaceutical trial: Results from NAVIGATOR. Metabolism, 63(4), 554561. PubMed ID: 24559843 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hult, A., Johansson, J., Nordström, P., & Nordström, A. (2019). Objectively measured physical activity in older adults with and without diabetes. Clinical Diabetes, 37(2), 142149. PubMed ID: 31057220 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jefferis, B.J., Parsons, T.J., Sartini, C., Ash, S., Lennon, L.T., Wannamethee, S.G., … Whincup, P.H. (2016). Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 36. PubMed ID: 26980183 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalyani, R.R., Corriere, M., & Ferrucci, L. (2014). Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes & Endocrinology, 2(10), 819829. PubMed ID: 24731660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzmarzyk, P.T., Leon, A.S., Wilmore, J.H., Skinner, J.S., Rao, D.C., Rankinen, T., & Bouchard, C. (2003). Targeting the metabolic syndrome with exercise: Evidence from the HERITAGE family study. Medicine & Science in Sports & Exercise, 35(10), 17031709. PubMed ID: 14523308 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, W.E., Janz, K.F., Powell, K.E., Campbell, W.W., Jakicic, J.M., Troiano, R.P., … Piercy, K.L. (2019). Daily step counts for measuring physical activity exposure and its relation to health. Medicine & Science in Sports & Exercise, 51(6), 12061212. PubMed ID: 31095077 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, W.E., Yates, T., Tuomilehto, J., Sun, J.L., Thomas, L., McMurray, J.J.V., … Holman, R.R. (2018). Relationship between baseline physical activity assessed by pedometer count and new-onset diabetes in the NAVIGATOR trial. BMJ Open Diabetes Research & Care, 6(1), e000523. PubMed ID: 30073088 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaMonte, M.J., Lewis, C.E., Buchner, D.M., Evenson, K.R., Rillamas-Sun, E., Di, C., … Eaton, C.B. (2017). Both light intensity and moderate-to-vigorous physical activity measured by accelerometry are favorably associated with cardiometabolic risk factors in older women: The Objective Physical Activity and Cardiovascular Health (OPACH) study. Journal of the American Heart Association, 6(10), e007064. PubMed ID: 29042429 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.M., Shiroma, E.J., Kamada, M., Bassett, D.R., Matthews, C.E., & Buring, J.E. (2019). Association of step volume and intensity with all-cause mortality in older women. JAMA Internal Medicine, 179(8), 11051112. PubMed ID: 31141585 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, P.G., & Halter, J.B. (2017). The pathophysiology of hyperglycemia in older adults: Clinical considerations. Diabetes Care, 40(4), 444452. PubMed ID: 28325795 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., Zhang, X., Guo, J., Roberts, C.K., McKenzie, S., Wu, W.C., … Song, Y. (2015). Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association, 4(7), e002014. PubMed ID: 26116691 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mottillo, S., Filion, K.B., Genest, J., Joseph, L., Pilote, L., Poirier, P., … Eisenberg, M.J. (2010). The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. Journal of the American College of Cardiology, 56(14), 11131132. PubMed ID: 20863953 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, J., Kokkinos, P., & Nyelin, E. (2019). Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients, 11(7), 1652. PubMed ID: 31331009 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordström, A., Bergman, J., Björk, S., Carlberg, B., Johansson, J., Hult, A., & Nordström, P. (2020). A multiple risk factor program is associated with decreased risk of cardiovascular disease in 70-year-olds: A cohort study from Sweden. PLoS Medicine, 17(6), e1003135. PubMed ID: 32525878 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orchard, T.J., Temprosa, M., Goldberg, R., Haffner, S., Ratner, R., Marcovina, S., & Fowler, S. (2005). The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The diabetes prevention program randomized trial. Annals of Internal Medicine, 142(8), 611619. PubMed ID: 15838067 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physical Activity Guidelines Advisory Committee. (2019). 2018 Physical activity guidelines advisory committee report. Retrieved from https://health.gov/paguidelines/second-edition/report/

    • Search Google Scholar
    • Export Citation
  • Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142148. PubMed ID: 1991946 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Maurice, P.F., Troiano, R.P., Bassett, D.R., Graubard, B.I., Carlson, S.A., Shiroma, E.J., … Matthews, C.E. (2020). Association of daily step count and step intensity with mortality among US adults. The Journal of the American Medical Association, 323(12), 11511160. PubMed ID: 32207799 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, M.D., Cleland, V.J., Shaw, K., Dwyer, T., & Venn, A.J. (2009). Cardiometabolic risk in younger and older adults across an index of ambulatory activity. American Journal of Preventive Medicine, 37(4), 278284. PubMed ID: 19765498 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisson, S.B., Camhi, S.M., Church, T.S., Tudor-Locke, C., Johnson, W.D., & Katzmarzyk, P.T. (2010). Accelerometer-determined steps/day and metabolic syndrome. American Journal of Preventive Medicine, 38(6), 575582. PubMed ID: 20494233 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, P.J., Syddall, H.E., Patel, H.P., Martin, H.J., Cooper, C., & Aihie Sayer, A. (2012). Is grip strength a good marker of physical performance among community-dwelling older people? The Journal of Nutrition, Health and Aging, 16(9), 769774. PubMed ID: 23131819 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Topouchian, J., Agnoletti, D., Blacher, J., Youssef, A., Chahine, M.N., Ibanez, I., … Asmar, R. (2014). Validation of four devices: Omron M6 Comfort, Omron HEM-7420, Withings BP-800, and Polygreen KP-7670 for home blood pressure measurement according to the European Society of Hypertension International Protocol. Vascular Health and Risk Management, 10, 3344. PubMed ID: 24476688 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, J.M., Welk, G.J., Beyler, N.K., & Kim, Y. (2016). Associations between physical activity and metabolic syndrome: Comparison between self-report and accelerometry. The American Journal of Health Promotion, 30(3), 155162. PubMed ID: 25806568 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations, Department of Economic and Social Affairs, Population Division. (2019). World population ageing 2019: Highlights (ST/ESA/SER.A/430). New York, NY: United Nations.

    • Search Google Scholar
    • Export Citation
  • Utzschneider, K.M., Carr, D.B., Hull, R.L., Kodama, K., Shofer, J.B., Retzlaff, B.M., … Kahn, S.E. (2004). Impact of intra-abdominal fat and age on insulin sensitivity and β-cell function. Diabetes, 53(11), 28672872. PubMed ID: 15504967 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S.H., Hui, W.S., Liu, Z., & Ho, S.C. (2010). Metabolic syndrome and all-cause mortality: A meta-analysis of prospective cohort studies. European Journal of Epidemiology, 25(6), 375384. PubMed ID: 20425137 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Liu, X., Liu, Y., Sun, X., Wang, B., Ren, Y., … Yin, L. (2017). Leisure-time physical activity and incident metabolic syndrome: A systematic review and dose-response meta-analysis of cohort studies. Metabolism, 75, 3644. PubMed ID: 28927737 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 238 238 104
Full Text Views 7 7 1
PDF Downloads 2 2 0