Shared Zones of Optimal Functioning: A Framework to Capture Peak Performance, Momentum, Psycho–Bio–Social Synchrony, and Leader–Follower Dynamics in Teams

in Journal of Clinical Sport Psychology
View More View Less
  • 1 University of Central Lancashire
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $59.00

1 year online subscription

USD  $79.00

Student 2 year online subscription

USD  $113.00

2 year online subscription

USD  $150.00

By bridging the literature on shared mental models and the individual zones of optimal functioning, the author advances a new framework called the shared zones of optimal functioning. The shared zones of optimal functioning is a probabilistic methodology designed to (a) capture optimal and suboptimal performance experiences in teams, (b) track team momentum through the analysis of within-team performance fluctuations, and (c) estimate within-team psycho–bio–social synchrony and leader–follower dynamics (i.e., leader–follower dichotomy, shared leadership). To test the shared zones of optimal functioning framework, three dyadic juggling teams were asked to juggle for 60 trials, while having their performance, arousal, pleasantness, and attentional levels recorded. Ordinal logistic regression, frequency counts, and cross-correlation analyses revealed that each team showed idiosyncratic affective and attentional levels linked to optimal performance, team momentum patterns, and leader–follower dynamics. The implications of these findings for the development of high-performing teams and specific avenues of future research are discussed throughout.

Filho (efilho@uclan.ac.uk) is with the Social Interaction and Performance Science (SINASPE) Lab, School of Psychology, University of Central Lancashire, Preston, United Kingdom.

  • Appelbaum, M., Cooper, H., Kline, R.B., Mayo-Wilson, E., Nezu, A.M., & Rao, S.M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(1), 325. PubMed ID: 29345484 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W.H. Freeman.

  • Basevitch, I., Thompson, B., Braun, R., Razon, S., Arsal, G., Tokac, U., . . . Tenenbaum, G. (2011). Olfactory effects on attention allocation and perception of exertion. The Sport Psychologist, 25(2), 144158. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berchicci, M., Quinzi, F., Dainese, A., & Di Russo, F. (2017). Time-source of neural plasticity in complex bimanual coordinative tasks: Juggling. Behavioural Brain Research, 328, 8794. PubMed ID: 28408297 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blascovich, J., Vanman, E., Mendes, W.B., & Dickerson, S. (2011). Social psychophysiology for social and personality psychology. Thousand Oaks, CA: Sage Publications.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bortoli, L., Bertollo, M., Hanin, Y., & Robazza, C. (2012). Striving for excellence: A multi-action plan intervention model for shooters. Psychology of Sport and Exercise, 13(5), 693701. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, G.E., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015). Time series analysis: Forecasting and control. Hoboken, NJ: John Wiley and Sons.

    • Search Google Scholar
    • Export Citation
  • Cotterill, S.T., & Fransen, K. (2016). Athlete leadership in sport teams: Current understanding and future directions. International Review of Sport and Exercise Psychology, 9(1), 116133. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudley, R.M., & Dudley, R.M. (1999). Uniform central limit theorems (No. 63). Cambridge: Cambridge University Press.

  • Dunbar, R.I. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16, 681694. doi:

  • Ericsson, K.A., Hoffman, R.R., Kozbelt, A., & Williams, A.M. (Eds.). (2018). The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E. (2019). Team dynamics theory: Nomological network among cohesion, team mental models, coordination, and collective efficacy. Sport Sciences for Health, 15(1), 120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., Bertollo, M., Robazza, C., & Comani, S. (2015). The juggling paradigm: A novel social neuroscience approach to identify neuropsychophysiological markers of team mental models. Frontiers in Psychology, 6, 799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., Bertollo, M., Tamburro, G., Schinaia, L., Chatel-Goldman, J., di Fronso, S., . . . Comani, S. (2016). Hyperbrain features of team mental models within a juggling paradigm: A proof of concept. PeerJ, 4, e2457. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., Di Fronso, S., Mazzoni, C., Robazza, C., Bortoli, L., & Bertollo, M. (2015). My heart is racing! Psychophysiological dynamics of skilled racecar drivers. Journal of Sports Sciences, 33, 945959. PubMed ID: 25555177 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., Moraes, L.C., & Tenenbaum, G. (2008). Affective and physiological states during archery competitions: Adopting and enhancing the probabilistic methodology of individual affect-related performance zones (IAPZs). Journal of Applied Sport Psychology, 20, 441456. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., Pierini, D., Robazza, C., Tenenbaum, G., & Bertollo, M. (2017). Shared mental models and intra-team psychophysiological patterns: A test of the juggling paradigm. Journal of Sports Sciences, 35(2), 112123. PubMed ID: 26967590 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, E., & Rettig, J. (2019). Team coordination in high-risk circus acrobatics. Interaction Studies, 19, 501520. doi:

  • Filho, E., & Tenenbaum, G. (2012). Team mental models in sports: An overview. In R. Schinke (Ed.), Athletic insight’s writings in sport psychology (pp. 329342). Hauppauge, NY: Nova Science Publishers, Inc.

    • Search Google Scholar
    • Export Citation
  • Filho, E., & Tenenbaum, G. (2020). Team mental models: Taxonomy, theory, and applied implications. In G. Tenenbaum& R.C. Eklund (Eds.), Handbook of sport psychology (4th ed., pp. 611631). Hoboken, NJ: Wiley Publication.

    • Search Google Scholar
    • Export Citation
  • Flett, M.R. (2015). Creating probabilistic idiographic performance profiles from discrete feelings: Combining the IZOF and IAPZ models. Sport Science Review, 24, 241266. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox Sports. (2020 ). 2019–20 LaLiga statistics and leaders: Standard. Retrieved from https://www.foxsports.com/soccer/stats?competition=2&category=standard&sort=3

    • Search Google Scholar
    • Export Citation
  • Gershgoren, L., Filho, E., Tenenbaum, G., & Schinke, R.J. (2013). Coaching shared mental models in soccer: A longitudinal case study. Journal of Clinical Sport Psychology, 7, 293312. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackman, J.R., & Wageman, R. (2005). A theory of team coaching. Academy of Management Review, 30, 269287. doi:

  • Hanin, Y.L. (Ed.). (2000). Emotions in sport. Champaign, IL: Human Kinetics.

  • Hoyle, R.H. (2011). Structural equation modeling for social and personality psychology. Thousand Oaks, CA: Sage Publications.

  • Johnson, M.B., Edmonds, W.A., Kamata, A., & Tenenbaum, G. (2009). Determining individual affect-related performance zones (IAPZ): A tutorial. Journal of Clinical Sports Psychology, 3, 3457. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M.B., Edmonds, W.A., Moraes, L.C., Filho, E.S., & Tenenbaum, G. (2007). Linking affect and performance of an international level archer incorporating an idiosyncratic probabilistic method. Psychology of Sport and Exercise, 8(3), 317335. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamata, A., Tenenbaum, G., & Hanin, Y.L. (2002). Individual zone of optimal functioning (IZOF): A probabilistic estimation. Journal of Sport and Exercise Psychology, 24, 189208. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lausic, D., Tenenbaum, G., Eccles, D., Jeong, A., & Johnson, T. (2009). Intrateam communication and performance in doubles tennis. Research Quarterly for Exercise and Sport, 80(2), 281290. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, B.C., & Klein, K.J. (2006). Team mental models and team performance: A field study of the effects of team mental model similarity and accuracy. Journal of Organizational Behavior, 27, 403418. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammed, S., Ferzandi, L., & Hamilton, K. (2010). Metaphor no more: A 15-year review of the team mental model construct. Journal of Management, 36, 876910. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, V., & Lindenberger, U. (2011). Cardiac and respiratory patterns synchronize between persons during choir singing. PloS One, 6, e24893. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879903. PubMed ID: 14516251 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popper, K. (2005). The logic of scientific discovery. New York, NY: Routledge.

  • Robazza, C., Bertollo, M., Filho, E., Hanin, Y., & Bortoli, L. (2016). Perceived control and hedonic tone dynamics during performance in elite shooters. Research Quarterly for Exercise and Sport, 87(3), 284294. PubMed ID: 27253427 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, M., & Hanin, Y. (2004). Metaphoric description and individualized emotion profiling of performance states in top karate athletes. Journal of Applied Sport Psychology, 16, 258273. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, M.C., Raglin, J.S., & Hanin, Y.L. (2017). The individual zones of optimal functioning (IZOF) model (1978-2014): Historical overview of its development and use. International Journal of Sport and Exercise Psychology, 15(1), 4163. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J.A., Weiss, A., & Mendelsohn, G.A. (1989). Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57(3), 493502. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sänger, J., Müller, V., & Lindenberger, U. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6, 119. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sänger, J., Müller, V., & Lindenberger, U. (2013). Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Frontiers in Human Neuroscience, 7, 114. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenk, J.W. (2014). Powers of two: Finding the essence of innovation in creative pairs. Boston, MA: Houghton Mifflin Harcourt.

  • Tenenbaum, G., & Filho, E. (2017). Decision-making in sports: A cognitive and neural 8basis perspective. Reference Module in Neuroscience and Biobehavioral Psychology. Philadelphia, PA: Elsevier.

    • Search Google Scholar
    • Export Citation
  • Thorson, K.R., West, T.V., & Mendes, W.B. (2018). Measuring physiological influence in dyads: A guide to designing, implementing, and analyzing dyadic physiological studies. Psychological Methods, 23(4), 595616. PubMed ID: 29283591 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Lei, H., Tenenbaum, G., & Land, W.M. (2016). Individual arousal-related performance zones effect on temporal and behavioral patterns in golf routines. Psychology of Sport and Exercise, 26, 5260. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Fenema, P.C. (2005). Collaborative elasticity and breakdowns in high reliability organizations: Contributions from distributed cognition and collective mind theory. Cognition, Technology and Work, 7(2), 134140. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wergin, V.V., Zimanyi, Z., Mesagno, C., & Beckmann, J. (2018). When suddenly nothing works anymore within a team-Causes of collective sport team collapse. Frontiers in Psychology, 9, 2115. PubMed ID: 30459685 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westli, H., Johnsen, B., Eid, J., Rasten, I., & Brattebø, G. (2010). Teamwork skills, shared mental models, and performance in simulated trauma teams: An independent group design. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 18, 47. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 212 212 46
Full Text Views 4 4 1
PDF Downloads 3 3 1