The Test of Gross Motor Development—Third Edition: A Bifactor Model, Dimensionality, and Measurement Invariance

in Journal of Motor Learning and Development
View More View Less
  • 1 Department of Motor Behavior, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
  • | 2 Department of Physical Education, Universidade Regional-URCA, Crato, Brazil
  • | 3 Federal University of Vale do São Francisco, Petrolina, Brazil
  • | 4 Federal University of Minas Gerais, Departamento de Psicologia, Belo Horizonte, Brazil
Restricted access

Aim: To examine the latent structure of the Test of Gross Motor Development—Third Edition (TGMD-3) with a bifactor modeling approach. In addition, the study examines the dimensionality and model-based reliability of general and specific contributions of the test’s subscales and measurement invariance of the TGMD-3. Methods: A convenience sample of (N = 496; Mage = 7.23 ± 2.03 years; 53.8% female) typically developed children participated in this study. Three alternative measurement models were tested: (a) a unidimensional model, (b) a correlated two-factor model, and (c) a bifactor model. Results: The totality of results, including item loadings, goodness-of-fit indexes, and reliability estimates, all supported the bifactor model and strong evidence of a general factor, namely gross motor competence. Additionally, the reliability of subscale scores was poor, and it is thus contended that scoring, reporting, and interpreting of the subscales scores are probably not justifiable. Conclusions: This study shows the advantages of using bifactor approach to examine the TGMD-3 factor structure and suggests that the two traditionally hypothesized factors are better understood as “grouping” factors rather than as representative of latent constructs. In addition, our findings demonstrate that the bifactor model appears invariant for sex.

  • Bagozzi, R.P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 7494. https://doi.org/10.1007/BF02723327

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardid, F., Huyben, F., Lenoir, M., Seghers, J., De Martelaer, K., Goodway, J.D., & Deconinck, F.J.A. (2016). Assessing fundamental motor skills in Belgian children aged 3–8 years highlights differences to US reference sample. Acta Paediatrica, 105(6), e281e290. https://doi.org/10.1111/apa.13380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardid, F., Utesch, T., & Lenoir, M. (2019). Investigating the construct of motor competence in middle childhood using the BOT-2 Short Form: An item response theory perspective. Scandinavian Journal of Medicine & Science in Sports, 29(12), 19801987. https://doi.org/10.1111/sms.13527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., Stodden, D., Cohen, K.E., Smith, J.J., Lubans, D.R., Lenoir, M., Iivonen, S., Miller, A.D., Laukkanen, A., Dudley, D., Lander, N.J., Brown, H., & Morgan, P.J. (2016). Fundamental movement skills: An important focus. Journal of Teaching in Physical Education, 35(3), 219225. https://doi.org/10.1123/jtpe.2014-0209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., van Beurden, E., Morgan, P.J., Brooks, L.O., & Beard, J.R. (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. Journal of Adolescent Health, 44(3), 252259. https://doi.org/10.1016/j.jadohealth.2008.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238246. https://doi.org/10.1037/0033-2909.107.2.238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollen, K.A. (1989). Structural equations with latent variables. Wiley.

  • Brown, T.A. (2015). Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press.

  • Bruininks, R., & Bruininks, B. (2005). Bruininks-Oseretsky test of motor proficiency (2nd ed.). Pearson Assessment.

  • Clark, J.E., & Metcalfe, J.S. (2002). The mountain of motor development: A metaphor. In J.E. Clark & J.H. Humphrey (Eds.), Motor development: Research and reviews (Vol. 2, pp. 163190). National Association of Sport and Physical Education.

    • Search Google Scholar
    • Export Citation
  • Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297334. https://doi.org/10.1007/BF02310555

  • Damásio, B.F. (2013). Contributions of the multigroup confirmatory factor analysis in the invariance evaluation of psychometric. Psico-USF, 18(2), 211220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epskamp, S. (2019). SemPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output. R package version 1.1.1. https://CRAN.R-project.org/package=semPlot

    • Search Google Scholar
    • Export Citation
  • Estevan, I., Molina-García, J., Queralt, A., Álvarez, O., Castillo, I., & Barnett, L. (2017). Validity and reliability of the Spanish version of the test of gross motor development-3. Journal of Motor Learning and Development, 5(1), 6981. https://doi.org/10.1123/jmld.2016-0045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallahue, D.L., Ozman, J.C., & Goodway, J.D. (2012). Understanding motor development: Infants, children, adolescents, adults (7th ed.). McGraw-Hill.

    • Search Google Scholar
    • Export Citation
  • Gignac, G.E., & Watkins, M.W. (2013). Bifactor modeling and the estimation of model based reliability in the WAIS-IV. Multivariate Behavioral Research, 48(5), 639662. https://doi.org/10.1080/00273171.2013.804398

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, J.-E., & Balke, G. (1993). General and specific abilities as predictor of school achievement. Multivariate Behavioral Research, 28(4), 407434. https://doi.org/10.1207/s15327906mbr2804_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hands, B.P. (2002). How can we best measure fundamental movement skills? 23rd Biennial National/International Conference.

  • Holzinger, K.J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2(1), 4154. https://doi.org/10.1007/BF02287965

  • Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 155. https://doi.org/10.1080/10705519909540118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulteen, R.M., Barnett, L.M., True, L., Lander, N.J., Del Pozo Cruz, B., & Lonsdale, C. (2020). Validity and reliability evidence for motor competence assessments in children and adolescents: A systematic review. Journal of Sports Science, 38, 17171798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, T.D., Pornprasertmanit, S., Schoemann, A.M., & Rosseel, Y. (2018). SemTools: Useful tools for structural equation modeling. R package version 0.5–1. https://CRAN.R-project.org/package=semTools

    • Search Google Scholar
    • Export Citation
  • Leary, M.R. (2008). Introduction to behavioral research methods (5th ed.). Pearson Education.

  • Little, T.D. (2013). Longitudinal structural equation modeling. The Guilford Press.

  • Lopes, L., Lopes, V.P., Santos, R., & Pereira, B. (2011). Association between physical activity and motor skills and coordination in Portuguese children. Brazilian Journal of Kinanthropometry and Human Performance, 13(1), 1521.

    • Search Google Scholar
    • Export Citation
  • Magistro, D., Piumatti, D., Calevaro, F., Sherar, L.B., Esliger, D.W., Bardaglio, G., Magno, F., Musella, G., & Zecca, M. (2018). Measurement invariance of TGMD-3 in children with and without mental and behavioral disorders. Psychological Assessment, 30(11), 14211429. https://doi.org/10.1037/pas0000587

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, H.W., Morin, A.J.S., Parker, P.D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10(1), 85110. https://doi.org/10.1146/annurev-clinpsy-032813-153700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, R.P. (1999). Test theory: A unified treatment. Lawrence Erlbaum.

  • McKay, M.T., Boduszek, D., & Harvey, S.A. (2014). The Rosenberg Self- Esteem Scale: A bifactor answer to the two-factor question? Journal of Personality Assessment, 96(6), 654660. https://doi.org/10.1080/00223891.2014.923436

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunnally, J.C., & Bernstein, I.H. (1994). Psychometric theory (3rd ed.). McGraw Hill.

  • Okuda, P.M.M., Pangelinan, M., Capellini, S.A., & Cogo-Moreira, H. (2019). Motor skills assessments: Support for a general motor factor for the Movement Assessment Battery for Children-2 and the Bruininks-Oseretsky Test of Motor Proficiency-2. Trends in Psychiatry and Psychotherapy, 41(1), 5159. https://doi.org/10.1590/2237-6089-2018-0014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raykov, T. (1998). Coefficient alpha and composite reliability with interrelated no homogeneous items. Applied Psychological Measurement, 22(4), 375385. https://doi.org/10.1177/014662169802200407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints. British Journal of Mathematical and Statistical Psychology, 54(2), 315323. https://doi.org/10.1348/000711001159582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reise, S.P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667696. https://doi.org/10.1080/00273171.2012.715555

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reise, S.P., Moore, T.M., & Haviland, M.G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544559. https://doi.org/10.1080/00223891.2010.496477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reise, S.P., Scheines, R., Widaman, K.F., & Haviland, M.G. (2012). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 526. https://doi.org/10.1177/0013164412449831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, A, Reise, S.P., & Haviland, M.G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223237. https://doi.org/10.1080/00223891.2015.1089249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudd, J., Butson, M.L., Barnett, L., Farrow, D., Berry, J., Borkoles, E., & Polman, R. (2016). A holistic measurement model of movement competency in children. Journal of Sports Sciences, 34(5), 477485. https://doi.org/10.1080/02640414.2015.1061202

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satorra, A., & Bentler, P.M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507514. https://doi.org/10.1007/BF02296192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., & Lee, T.D. (1999). Motor control and learning: A behavioral emphasis (3rd ed.). Human Kinetics.

  • Steiger, J.H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173180. https://doi.org/10.1207/s15327906mbr2502_4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, L.R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 110. https://doi.org/10.1007/BF02291170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulrich, D.A. (1985). Test of gross motor development. Pro-Ed.

  • Ulrich, D.A. (2000). The test of gross motor development (2nd ed.). Pro-Ed.

  • Ulrich, D.A. (2019). Test of gross motor development (3rd ed.). Pro-Ed.

  • Utesch, T., Dreiskämper, D., Strauss, B., & Naul, R. (2018). The development of the physical fitness construct across childhood. Scandinavian Journal of Medicine & Science in Sports, 28(1), 212219. https://doi.org/10.1111/sms.12889

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valentini, N.C., Zanella, L.W., & Webster, E.K. (2017). Test of Gross Motor Development—Third edition: Establishing content and construct validity for Brazilian children. Journal of Motor Learning and Development, 5(1), 1528. https://doi.org/10.1123/jmld.2016-0002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, M.O., Webster, E.K., & Ulrich, D.A. (2017). Psychometric properties of the Test of Gross Motor Development, Third Edition (German translation): Results of a pilot-study. Journal of Motor Learning and Development, 5(1), 2944. https://doi.org/10.1123/jmld.2016-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, E.K., & Ulrich, D.A. (2017). Evaluation of the psychometric properties of the Test of Gross Motor Development—Third Edition. Journal of Motor Learning and Development, 5(1), 4558. https://doi.org/10.1123/jmld.2016-0003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickham, H., & Wickham, M.H. (2020). Package “plyr.” https://cran.rproject.org/web/packages/dplyr/dplyr.pdf

All Time Past Year Past 30 Days
Abstract Views 588 588 188
Full Text Views 11 11 0
PDF Downloads 12 12 0