Task and Skill Level Constraints on the Generality of the Proximal–Distal Principle for Within-Limb Movement Coordination

in Journal of Motor Learning and Development
View More View Less
  • 1 Department of Kinesiology, The University of Georgia, Athens, GA, USA
  • | 2 Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
Restricted access

This paper examines the influence of task and skill level constraints on the generality of proximal–distal control for within-limb movement coordination. Analysis and synthesis of the experimental findings leads to the proposition that proximal–distal is one of several within-limb patterns of coordination, including: the reverse distal–proximal sequence, simultaneous activation of segments, and other sequence variations of this. The probability of particular patterns occurring is induced by task constraints and skill level of the individual, together with their evolving biomechanical consequences, including: open/closed chain, absorption/propulsion of force, magnitude of momentum, and accuracy/timing. We develop the theoretical perspective that classes of task constraints induce particular types of neuromechanical organization to within-arm or within-leg segment coordination. In this task constraint framework, proximal–distal within-limb organization is a particular rather than a general case for within-limb coordination. The limitations of anatomically-based accounts of directional change for within-limb organization are discussed with reference to a general functional degrees of freedom task constraint framework for movement coordination and control.

Newell (Kmn1@uga.edu) is corresponding author.

  • Anderson, D.I., & Sidaway, B. (1994). Coordination changes associated with practice of a soccer kick. Research Quarterly for Exercise and Sport, 65(2), 9399. https://doi.org/10.1080/02701367.1994.10607603

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arampatzis, A., & Brüggemann, G.P. (1998). A mathematical high bar-human body model for analyzing and interpreting mechanical-energetic processes on the high bar. Journal of Biomechanics, 31(12), 10831092. https://doi.org/10.1016/S0021-9290(98)00134-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arutyunyan, G.H., Gurfinkel, V.S., & Mirskii, M.L. (1968). Investigation of aiming at a target. Biophysics, 14, 11621167.

  • Bartlett, R. (2000). Principles of throwing. In V.M. Zatsiorsky (Ed.), Biomechanics in sport (pp. 365380). Blackwell.

  • Bartlett, R. (2007). Sports biomechanics: Reducing injury and improving performance (2nd ed.). Routledge.

  • Bartlett, R. & Robins, M. (2008). Biomechanics of throwing. In Y. Hong & R. Bartlett (Eds.), Handbook of biomechanics and human movement science (pp. 285296). Routledge.

    • Search Google Scholar
    • Export Citation
  • Bauer, W.L. (1983). Swinging as a way of increasing the mechanical energy in gymnastic manoeuvres. In H. Matsui & K. Kobayashi (Eds.), Biomechanics vol VIII-B (pp. 801807). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Bernstein, N. (1967). The co-ordination and regulation of movements. Pergamon Press.

  • Bernstein, N.A. (1947/2021). M.L. Latash (Ed.), Bernstein’s construction of movements. Routledge.

  • Berthier, N.E., Clifton, R.K., McCall, D.D., & Robin, D.J. (1999). Proximodistal structure of early reaching in human infants. Experimental Brain Research, 127(3), 259269. https://doi.org/10.1007/s002210050795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobbert, M.F., & van Ingen Schenau, G.J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249262. https://doi.org/10.1016/0021-9290(88)90175-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunn, J.W. (1972). Principles of coaching. Prentice-Hall.

  • Dounskaia, N. (2005). The internal model and the leading joint hypothesis, implications for control of multi-joint movements. Experimental Brain Research, 166(1), 116. https://doi.org/10.1007/s00221-005-2339-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dounskaia, N. (2010). Control of human limb movements: The leading joint hypothesis and its practical applications. Exercise and Sport Reviews, 38(4), 201208. https://doi.org/10.1097/JES.0b013e3181f45194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, B.C. (2000). Hitting and kicking. In V.M. Zatsiorsky (Ed.), Biomechanics in sport: Performance enhancement and injury prevention (pp. 487504). Blackwell.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fradet, L., Botcazou, M., Durocher, C., Cretual, A., Multon, F., Prioux, J., & Delamarche, P. (2004). Do handball throws always exhibit a proximal-to-distal segmental sequence? Journal of Sports Sciences, 22(5), 439447. https://doi.org/10.1080/02640410310001641647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, P.X., Lindinger, S.J., & Schwameder, H. (2018). Kinematic analysis of proximal-to-distal and simultaneous motion sequencing of straight punches. Sports Biomechanics, 17, 512530.

    • Search Google Scholar
    • Export Citation
  • Gesell, A. (1952). Infant development: The embryology of early human behavior. Greenwood Press.

  • Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347356. https://doi.org/10.1007/BF00336922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatsopoulos, N.G., Olmedo, L., & Takshashi, K. (2011). Proximal to distal sequencing behavior and motor cortex. In F. Danion & M.L. Latash (Eds.), Motor control: Theories, experiments and applications (pp. 159176). Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Irwin, G., & Kerwin, D.G. (2005). Biomechanical similarities of progressions for the longswing on high bar. Sports Biomechanics, 4(2), 163178. https://doi.org/10.1080/14763140508522861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irwin, G., & Kerwin, D.G. (2007). Musculoskeletal demands of progressions for the longswing on high bar. Sports Biomechanics, 6(3), 361374. https://doi.org/10.1080/14763140701491336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karandikar, N., Oscar, O., & Vargas, O. (2011). Kinetic chains: A review of the concept and its clinical applications. Physical Medicine & Rehabilitation, 3, 739745.

    • Search Google Scholar
    • Export Citation
  • Katis, A., Kellis, E., & Lees, A. (2015). Age and gender differences in kinematics of powerful instep kicks in soccer. Sports Biomechanics, 14(3), 287299. https://doi.org/10.1080/14763141.2015.1056221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J.A.S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT Press.

  • Kelso, J.A.S. (2012). Multistability and metastability: Understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society B, 367(1591), 906918. https://doi.org/10.1098/rstb.2011.0351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostrubiec, V., Zanone, P.G., Fuchs, A., & Kelso, J.A. (2012). Beyond the blank slate: Routes to learning new coordination patterns depend on the intrinsic dynamics of the learner—Experimental evidence and theoretical model. Frontiers of Human Neuroscience, 6, 222. https://doi.org/10.3389/fnhum.2012.00222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kugler, P.N., Kelso, J.A.S., & Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G.E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 347). North-Holland.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kugler, P.N., Kelso, J.A.S., & Turvey, M.T. (1982). On the control and coordination of naturally developing systems. In J.A.S. Kelso & J.E. Clark (Eds.), The development of movement control and co-ordination (pp. 578). Wiley.

    • Search Google Scholar
    • Export Citation
  • Lamoth, C.J., Daffertshofer, A., Huys, R., & Beek, P.J. (2009). Steady and transient coordination structures of walking and running. Human Movement Science, 28(3), 371386. https://doi.org/10.1016/j.humov.2008.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landlinger, J., Landlinger, S., Stöggl, T., Wagner, H., & Müller, E. (2010). Key factors and timing patterns in the tennis forehand of different skill levels. Journal of Sports Science and Medicine, 9, 643651.

    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). Fundamentals of motor control. Elsevier.

  • Lees, A. (1981). Methods of impact absorption when landing from a jump. Paper presented at the conference on the Biomechanics of Sports Medicine and Physical Education, The University of Leeds.

    • Search Google Scholar
    • Export Citation
  • Lees, A., & Dolan, L. (1998). The biomechanics of soccer: A review. Journal of Sports Sciences, 16(3), 211234. https://doi.org/10.1080/026404198366740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Leigh, S., & Yu, B. (2010). Sequences of upper and lower extremity motions in javelin throwing. Journal of Sport Sciences, 28(13), 14591467. https://doi.org/10.1080/02640414.2010.514004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, R.N., & Elliott, B.C. (2000). Long-axis rotation: The missing link in proximal-to-distal segmental sequencing. Journal of Sports Sciences, 18(4), 247254. https://doi.org/10.1080/026404100364983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, P.V., van Emmerik, R.E.A., & Newell, K.M. (1989). The effects of practice on limb kinematics in a throwing task. Journal of Motor Behavior, 21(3), 245264. https://doi.org/10.1080/00222895.1989.10735480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGinnis, P.M., & Newell, K.M. (1982). Topological dynamics: A framework for describing movement and its constraints. Human Movement Science, 1(4), 289305. https://doi.org/10.1016/0167-9457(82)90017-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinley, P., & Pedotti, A. (1992). Motor strategies in landing from a jump: The role of skill in task execution. Experimental Brain Research, 90(2), 427440. https://doi.org/10.1007/BF00227257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNitt-Gray, J.L. (1991). Kinematics and impulse character­istics of drop landings from three heights. International Journal of Sport Biomechanics, 7, 201204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNitt-Gray, J.L. (1993). Kinetics of the lower extremities during drop landings from three heights. Journal of Biomechanics, 12, 201224.

    • Search Google Scholar
    • Export Citation
  • McNitt-Gray, J.L. (2000). Musculoskeletal loading during landing. In V.M. Zatsiorsky (Ed.), Biomechanics in sport (pp. 523549). Blackwell.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milburn, P.D. (1982). Summation of segmental velocities in the golf swing. Medicine and Science in Sports and Exercise, 14(1), 6064. https://doi.org/10.1249/00005768-198201000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, S., & Newell, K.M. (1996). Inter- and Intra-limb coordination in arm tremor. Experimental Brain Research, 110(3), 455464. https://doi.org/10.1007/BF00229145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulloy, M.F., Mullineaux, D.R., Graham-Smith, P., & Irwin, G. (2018). An applied paradigm for simple analysis of the lower limb kinematic chain in explosive movements: An example using the fencing foil attacking lunge. International Biomechanics, 5(1), 916, https://doi.org/10.1080/23335432.2018.1454342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1985). Coordination, control and skill. In D. Goodman, I. Franks, & R. Wilberg (Eds.), Differing perspectives in motor learning, memory and control (pp. 295317). North-Holland.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade & H.T. A. Whiting (Eds.), Motor development in children: Aspects of coordination and control (pp. 341360). Nato Sciences Series D. Dordrect: Martinus Nijhoff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., Kugler, P.N., Emmerik, R.E.A., & McDonald, P.V. (1989). Search strategies and the acquisition of coordination. In S.A. Wallace (Ed.), Perspectives on coordination (pp. 86122). North Holland.

    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Liu, Y-T. (2020). On collective variables and task constraints in movement coordination, control and skill. Journal of Motor Behavior, 52, 127. https://doi.org/10.1080/00222895.2020.1835799

    • Search Google Scholar
    • Export Citation
  • Newell, K.M., Liu, Y.T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108(1), 5782. https://doi.org/10.1037/0033-295X.108.1.57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Vaillancourt, D.E. (2001). Dynamical change in motor learning. Human Movement Science, 20(4-5), 695715. https://doi.org/10.1016/S0167-9457(01)00073-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & van Emmerik, R.E.A. (1989). The acquisition of coordination: Preliminary analysis of learning to write. Human Movement Science, 8(1), 1732. https://doi.org/10.1016/0167-9457(89)90021-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & van Emmerik, R.E.A. (1990). Are Gesell’s developmental principles general principles for the acquisition of coordination. In J.E. Clark & J.H. Humphrey (Eds.), Advances in motor development research (Vol. 3), (pp. 143164). AMS Press.

    • Search Google Scholar
    • Export Citation
  • Novacheck, T.F. (1998). The biomechanics of running. Gait & Posture, 7(1), 7795. https://doi.org/10.1016/S0966-6362(97)00038-6

  • Palmer, H.A., Newell, K.M., Gordon, D., Smith, L., & Williams, G.K.R. (2018). Qualitative and quantitative change in the kinematics of learning a non-dominant overarm throw. Human Movement Science, 62, 134142. https://doi.org/10.1016/j.humov.2018.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, C. (1991). A segment interaction analysis of proximal to distal sequential segment motion patterns. Medicine & Science in Sport & Exercise, 23, 130144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, C. (1993). Sequential motions of body segments in striking and throwing skills: descriptions and explanations. Journal of Biomechanics, 26, 125135. https://doi.org/10.1016/0021-9290(93)90084-R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezzoug, N., Hansen, C., Gorce, P., & Isableu, B. (2018). Contribution of interaction torques during dart throwing: Differences between novices and experts. Human Movment Science, 57, 258266. https://doi.org/10.1016/j.humov.2017.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberton, M.A. (1977). Stability of stage categorizations across trials: Implications for the ‘stage theory’ of overarm throw development. Journal of Human Movement Studies, 3, 4959.

    • Search Google Scholar
    • Export Citation
  • Schöner, G., Zanone, P.G., & Kelso, J.A.S. (1992). Learning as a change of coordination dynamics. Journal of Motor Behavior, 24(1), 2948. https://doi.org/10.1080/00222895.1992.9941599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrien, B., & Baeyens, J-P. (2017). The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales. Human Movement Science, 55, 156171. https://doi.org/10.1016/j.humov.2017.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steindler, A. (1955). Kinesiology of the human body. Thomas.

  • Stodden, D.F., Langendorfer, S.J., Fleisig, G.S., & Andrews, J.R. (2006a). Kinematic constraints associated with the acquisition of overarm throwing Part I: Step and trunk actions. Research Quarterly for Exercise and Sport, 77, 417427.

    • Search Google Scholar
    • Export Citation
  • Stodden, D.F., Langendorfer, S.J., Fleisig, G.S., & Andrews, J.R. (2006b). Kinematic constraints associated with the acquisition of overarm throwing Part II: Upper extremity actions. Research Quarterly for Exercise and Sport, 77, 428436.

    • Search Google Scholar
    • Export Citation
  • Thelen, E., & Smith, L.B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press.

  • Turvey, M.T. (1990). Coordination. American Psychologist, 45(8), 938953. https://doi.org/10.1037/0003-066X.45.8.938

  • van den Tillaar, R., & Ettema, G. (2009). Is there a proximal-to-distal sequence in overarm throwing in team handball? Journal of Sports Sciences, 27(9), 949955. https://doi.org/10.1080/02640410902960502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Santvrood, A.A.M., & Beek, P.J. (1996). Spatiotemporal variability in cascade juggling. Acta Psychologica, 91, 131151.

  • Vicinanza, D., Williams, G., Smith, L., Irwin, G., & Newell, K.M. (2018). Limit cycle dynamics of the gymnastics longswing. Human Movement Science, 57, 217226. https://doi.org/10.1016/j.humov.2017.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lieres und Wilkau, H. (2017). Biomechanical changes between phases of maximal sprinting (Unpublished Doctoral Thesis). Cardiff Metropolitan University, UK.

    • Search Google Scholar
    • Export Citation
  • von Lieres und Wilkau, H., Irwin, G., Bezodis, N., Simpson, S., & Bezodis, I.N. (July, 2016). Support leg joint contributions to centre of mass acceleration during three phases of maximal sprinting. In: M. Ae, Y. Enomoto, N. Fujii, & H. Takagi (Eds.). Paper presented at the Proceedings of the 34rd International Conference on Biomechanics in Sports, Tsukuba, Japan, pp. 10971100.

    • Search Google Scholar
    • Export Citation
  • Weinert-Aplin, R.A., Howard, D., Twists, M., Jarvis, H.L., Bennett, A.N., & Baker, R.J. (2017). Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off. Medical Engineering Physics, 39, 7382. https://doi.org/10.1016/j.medengphy.2016.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, B., & Fosbury, D. (2018). The wizard of Foz: Dick Fosbury’s one-man high-jump revolution. Skyhorse.

  • Wild, M. (1938). The behavior pattern of throwing and some observations concerning the course of development. Research Quarterly, 9, 2024.

    • Search Google Scholar
    • Export Citation
  • Williams, G., Irwin, G., Kerwin, D.G., & Newell, K.M. (2015). Biomechanical energetic processes during learning the longswing on high bar. Journal of Sports Sciences, 33(13), 13761387. https://doi.org/10.1080/02640414.2014.990484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeadon, M.R. (1990). The simulation of aerial movement. Part II: A mathematical inertia model of the human body. Journal of Biomechanics, 23(1), 6774. https://doi.org/10.1016/0021-9290(90)90370-I

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M. (1998). Kinematics of human motion. Human Kinetics.

All Time Past Year Past 30 Days
Abstract Views 264 264 181
Full Text Views 351 351 0
PDF Downloads 168 168 0