Actual and Perceived Motor Competence, Cardiorespiratory Fitness, Physical Activity, and Weight Status in Schoolchildren: Latent Profile and Transition Analyses

Click name to view affiliation

Iiris Kolunsarka Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Iiris Kolunsarka in
Current site
Google Scholar
PubMed
Close
*
,
Arto Gråstén Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
Physical Education Department, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi

Search for other papers by Arto Gråstén in
Current site
Google Scholar
PubMed
Close
,
Mikko Huhtiniemi Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Mikko Huhtiniemi in
Current site
Google Scholar
PubMed
Close
, and
Timo Jaakkola Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Timo Jaakkola in
Current site
Google Scholar
PubMed
Close
Restricted access

Engagement in physical activity plays a central role in the prevention and treatment of childhood overweight/obesity. However, some children may lack the skills and confidence to be physically active. This 3-year follow-up study aimed to form profiles based on cardiorespiratory fitness, actual motor competence, perceived motor competence, physical activity, and weight status, and to examine if these profiles remain stable from late childhood to early adolescence. All these variables were annually assessed in 1,162 Finnish schoolchildren (girls = 583 and boys = 564, Mage = 11.27 ± 0.32 years). Latent profile analysis was used to identify profiles and latent transition analysis to examine the stability of latent statuses. Three profiles were identified: normal weight with high movement, normal weight with low movement, and overweight–obese with low movement. Profile memberships remained relatively stable over time, indicating that children with low actual and perceived motor competence, cardiorespiratory fitness, and physical activity in late childhood also tended to exhibit these characteristics in early adolescence.

  • Collapse
  • Expand
  • Barnett, L.M., Morgan, P.J., van Beruden, E., Ball, K., & Lubans, D.R. (2011). A reverse pathway? Actual and perceived skill proficiency and physical activity. Medicine & Science in Sports & Exercise, 43(5), 898904. https://doi.org/10.1249/MSS.0b013e3181fdfadd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., van Beurden, E., Morgan, P.J., Brooks, L.O., & Beard, J.R. (2010). Gender differences in motor skill proficiency from childhood to adolescence. Research Quarterly for Exercise and Sport, 81(2), 162170. https://doi.org/10.1080/02701367.2010.10599663

    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., Webster, E.K., Hulteen, R.M., de Meester, A., Valentini, N.C., Lenoir, M., Pesce, C., Getchell, N., Lopes, V.P., Robinson, L.E., & Rodrigues, L.P. (2022). Through the looking glass: A systematic review of longitudinal evidence, providing new insight for motor competence and health. Sports Medicine, 52, 875920. https://doi.org/10.1007/s40279-021-01516-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, S.J.H., Atkin, A.J., Cavill, N., & Foster, C. (2011). Correlates of physical activity in youth: A review of quantitative systematic reviews. International Review of Sport Exercise Psychology, 4(1), 2549. https://doi.org/10.1080/1750984X.2010.548528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchard, C., & Shephard, R.J. (1994). Physical activity, fitness, and health: The model and key concepts. In C. Bouchard, R.J. Shephard, & T. Stephens (Eds.), Physical activity, fitness and health. Human Kinetics.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chivers, P., Larkin, D., Rose, E., Beilin, L., & Hands, B. (2013). Low motor performance scores among overweight children: Poor coordination or morphological constraints? Human Movement Science, 32(5), 11271137. https://doi.org/10.1016/j.humov.2013.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, T.J., & Lobstein, T. (2012). Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obesity, 7(4), 284294. https://doi.org/10.1111/j.2047-6310.2012.00064.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppens, E., Bardid, F., Deconinck, F.J.A., Haerens, L., Stodden, D., D’Hondt, E., & Lenoir, M. (2019). Developmental change in motor competence: A latent growth curve analysis. Frontiers in Physiology, 10, Article 1273. https://doi.org/10.3389/fphys.2019.01273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Hondt, E., Deforche, B., De Bourdeaudhuij, I., & Lenoir, M. (2009). Relationship between motor skill and body mass index in 5- to 10-year-old children. Adapted Physical Activity Quarterly, 26(1), 2137. https://doi.org/10.1123/apaq.26.1.21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Meester, A., Barnett, L.M., Brian, A., Bowe, S.J., Jimenez-Diaz, J., Van Duyse, F., Irwin, J.M., Stodden, D.F., D’Hondt, E., Lenoir, M., & Haerens, L. (2020). The relationship between actual and perceived motor competence in children, adolescents and young adults: A systematic review and meta-analysis. Sports Medicine, 50(11), 20012049. https://doi.org/10.1007/s40279-020-01336-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos Santos, F.K., Prista, A., Gomes, T.N.Q.F., Santos, D., Damasceno, A., Madeira, A., Katzmarzyk, P.T., & Maia, J.A.R. (2015). Body mass index, cardiorespiratory fitness and cardiometabolic risk factors in youth from Portugal and Mozambique. International Journal of Obesity, 39(10), 14671474. https://doi.org/10.1038/ijo.2015.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estevan, I., & Barnett, L.M. (2018). Considerations related to the definition, measurement and analysis of perceived motor competence. Sports Medicine, 48(12), 26852694. https://doi.org/10.1007/s40279-018-0940-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estevan, I., Menescardi, C., García‐Massó, X., Barnett, L.M., & Molina‐García, J. (2021). Profiling children longitudinally: A three‐year follow‐up study of perceived and actual motor competence and physical fitness. Scandinavian Journal of Medicine & Science in Sports, 31(Suppl. 1), 3546. https://doi.org/10.1111/sms.13731

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. https://doi.org/10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, S.L., G. Moore, E.W., & Hull, D.M. (2020). Finding latent groups in observed data: A primer on latent profile analysis in Mplus for applied researchers. International Journal of Behavioral Development, 44(5), 458468. https://doi.org/10.1177/0165025419881721

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, K.R., & Corbin, C. (1989). The physical self-perception profile: Development and preliminary validation. Journal of Sport and Exercise Psychology, 11(4), 408430. https://doi.org/10.1123/jsep.11.4.408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentier, I., D’Hondt, E., Shultz, S., Deforche, B., Augustijn, M., Hoorne, S., Verlaecke, K., De Bourdeaudhuij, I., & Lenoir, M. (2013). Fine and gross motor skills differ between healthy-weight and obese children. Research in Developmental Disabilities, 34(11), 40434051. https://doi.org/10.1016/j.ridd.2013.08.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodway, J.D., Ozmun, J.C., & Gallahue, D.L. (2021). Understanding motor development: infants, children, adolescents, adults (8th ed.). Jones & Bartlett Learning.

    • Search Google Scholar
    • Export Citation
  • Gråstén, A. (2014). Students’ physical activity, physical education enjoyment, and motivational determinants through a three-year school-initiated program. Studies in Sport, Physical Education, and Health 205: University of Jyväskylä.

    • Search Google Scholar
    • Export Citation
  • Guthold, R., Stevens, G.A., Riley, L.M., & Bull, F.C. (2020). Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. The Lancet Child & Adolescent Health, 4(1), 2335. https://doi.org/10.1016/S2352-4642(19)30323-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heil, D.P., Brage, S., & Rothney, M.P. (2012). Modeling physical activity outcomes from wearable monitors. Medicine & Science in Sports & Exercise, 44(1, Suppl. 1), S50S60. https://doi.org/10.1249/MSS.0b013e3182399dcc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, L., & Jorgensen, M. (2003). Mixture model clustering for mixed data with missing information. Computational Statistics & Data Analysis, 41(3), 429440. https://doi.org/10.1016/S0167-9473(02)00190-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaakkola, T., Sääkslahti, A., Liukkonen, J., & Iivonen, S. (2012). Peruskoululaisten fyysisen toimintakyvyn seurantajärjestelmä [The system to develop and follow Finnish students’ physical fitness and motor skills]. University of Jyväskylä: Faculty of Sport and Health Sciences.

    • Search Google Scholar
    • Export Citation
  • Jaakkola, T., Yli-Piipari, S., Huhtiniemi, M., Salin, K., Hakonen, H., & Gråstén, A. (2021). Motor competence and health-related fitness of school-age children: A two-year latent transition analysis. Medicine & Science in Sports & Exercise, 53(12), 26452652. https://doi.org/10.1249/MSS.0000000000002746

    • Search Google Scholar
    • Export Citation
  • Jaakkola, T., Yli-Piipari, S., Stodden, D.F., Huhtiniemi, M., Salin, K., Seppälä, S., Hakonen, H., & Gråstén, A. (2020). Identifying childhood movement profiles and tracking physical activity and sedentary time across 1 year. Translational Sports Medicine, 3(5), 480487. https://doi.org/10.1002/tsm2.156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, X., Basterfield, L., Parkinson, K.N., Pearce, M.S., Reilly, J. K., Adamson, A.J., & Reilly, J.J. (2019). Non-linear longitudinal associations between moderate-to-vigorous physical activity and adiposity across the adiposity distribution during childhood and adolescence: Gateshead Millennium Study. International Journal of Obesity, 43(4), 744750. https://doi.org/10.1038/s41366-018-0188-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R.A., Okely, A.D., Caputi, P., & Cliff, D.P. (2010). Perceived and actual competence among overweight and non-overweight children. Journal of Science and Medicine in Sport, 13(6), 589596. https://doi.org/10.1016/j.jsams.2010.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiphard, E.J., & Schilling, F. (2007). Körperkoordinationstest für Kinder 2, überarbeitete und ergänzte Aufgabe. Beltz Test.

  • Kolunsarka, I., Gråsten, A., Huhtiniemi, M., & Jaakkola, T. (2021). Development of children’s actual and perceived motor competence, cardiorespiratory fitness, physical activity, and BMI. Medicine & Science in Sports & Exercise, 53(12), 26532660. https://doi.org/10.1249/MSS.0000000000002749

    • Search Google Scholar
    • Export Citation
  • Leger, L.A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2 max. European Journal of Applied Physiology and Occupational Physiology, 49(1), 112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lounassalo, I., Salin, K., Kankaanpää, A., Hirvensalo, M., Palomäki, S., Tolvanen, A., Yang, X., & Tammelin, T.H. (2019). Distinct trajectories of physical activity and related factors during the life course in the general population: A systematic review. BMC Public Health, 19(1), 271. https://doi.org/10.1186/s12889-019-6513-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahumud, R.A., Sahle, B.W., Owusu-Addo, E., Chen, W., Morton, R.L., & Renzaho, A.M.N. (2021). Association of dietary intake, physical activity, and sedentary behaviours with overweight and obesity among 282,213 adolescents in 89 low and middle income to high-income countries. International Journal of Obesity, 45, 24042418. https://doi.org/10.1038/s41366-021-00908-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malina, R.M., Bouchard, C., & Bar-Or, O. (2004). Growth, maturation, and physical activity (2nd ed.). Human Kinetics.

  • Moliner-Urdiales, D., Ruiz, J.R., Vicente-Rodriguez, G., Ortega, F.B., Rey-Lopez, J.P., Espana-Romero, V., Casajús, J.A., Molnar, D., Widhalm, K., Dallongeville, J., &Moreno, L.A. (2011). Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: The HELENA Study. British Journal of Sports Medicine, 45(2), 101108. https://doi.org/10.1136/bjsm.2009.062430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCD Risk Factor Collaboration (NCD-RisC). (2020). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet Child and Adolescent Health, 4, 26272642. https://doi.org/10.1016/S0140-6736(17)32129-3

    • Search Google Scholar
    • Export Citation
  • Nuttall, F. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50(3), 117128. https://doi.org/10.1097/NT.0000000000000092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nylund, K.L., Asparouhov, T., & Muthén, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535569. https://doi.org/10.1080/10705510701575396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oluwagbemigun, K., Buyken, A.E., Alexy, U., Schmid, M., Herder, C., & Nöthlings, U. (2019). Developmental trajectories of body mass index from childhood into late adolescence and subsequent late adolescence-young adulthood cardiometabolic risk markers. Cardiovascular Diabetology, 18(1), 14. https://doi.org/10.1186/s12933-019-0813-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnick, D.L., & Bornstein, M.H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review, 41, 7190. https://doi.org/10.1016/j.dr.2016.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghuveer, G., Hartz, J., Lubans, D., Takken, T., Wiltz, J., Mietus-Snyder, M., Perak, A., Baker-Smith, C., Pietris, N., & Edwards, N. (2020). Cardiorespiratory fitness in youth: An important marker of health: A scientific statement from the American Heart Association. Circulation, 142(7), e101e118. https://doi.org/10.1161/CIR.0000000000000866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L.E., Stodden, D.F., Barnett, L.M., Lopes, V.P., Logan, S.W., Rodrigues, L.P., & D’Hondt, E. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Medicine, 45(9), 12731284. https://doi.org/10.1007/s40279-015-0351-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A.S., Mulder, C., Twisk, J.W.R., van Mechelen, W., & Chinapaw, M.J.M. (2008). Tracking of childhood overweight into adulthood: A systematic review of the literature. Obesity Reviews, 9(5), 474488. https://doi.org/10.1111/j.1467-789X.2008.00475.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stodden, D.F., Goodway, J.D., Langendorfer, S.J., Roberton, M.A., Rudisill, M.E., Garcia, C., & Garcia, L.E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290306. https://doi.org/10.1080/00336297.2008.10483582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomkinson, G.R., Lang, J.J., Blanchard, J., Léger, L.A., & Tremblay, M.S. (2019). The 20-m shuttle run: Assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatric Exercise Science, 31(2), 152163. https://doi.org/10.1123/pes.2018-0179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • True, L., Martin, E.M., Pfeiffer, K.A., Siegel, S.R., Branta, C.F., Haubenstricker, J., & Seefeldt, V. (2021). Tracking of physical fitness components from childhood to adolescence: A longitudinal study. Measurement in Physical Education and Exercise Science, 25(1), 2234. https://doi.org/10.1080/1091367X.2020.1729767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, E.K., Sur, I., Stevens, A., & Robinson, L.E. (2021). Associations between body composition and fundamental motor skill competency in children. BMC Pediatrics, 21(1), 444. https://doi.org/10.1186/s12887-021-02912-9

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1341 497 50
Full Text Views 516 286 0
PDF Downloads 125 42 0