Scheduling Concurrent Visual Feedback in Learning a Continuous Balance Task

in Journal of Motor Learning and Development
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $55.00

Student 2 year subscription

USD $79.00

2 year subscription

USD $103.00

This investigation held concurrent visual feedback frequency at 50% in the acquisition phase and manipulated three different feedback schedules while comparing those to a 0% feedback frequency. In an assessment of dynamic postural stability, young, healthy adults performed 20 acquisition trials and four retention trials 48-hr later on a circular platform that moved in the anterior/posterior and medial/lateral axes simultaneously. Three concurrent feedback schedules were manipulated: a fade schedule consisting of high relative frequency of concurrent feedback early in the acquisition phase which was systematically reduced throughout acquisition (e.g., 100%, 75%, 50%, 25%, 0%), a constant schedule consisting of a uniform scheduling of concurrent feedback on every other acquisition trial, and a reverse fade group consisting of a schedule exactly opposite to that of the fade group. A no concurrent feedback group was also utilized to determine if feedback was necessary to learn the balance task. Acquisition and retention results revealed the concurrent groups performed with significantly greater accuracy and stability than the no concurrent feedback group. There were no significant differences between the three concurrent feedback schedules. Results indicate that manipulating concurrent feedback scheduling did not produce similar results to those investigations manipulating knowledge of results scheduling.

Goodwin (jeff.goodwin@unt.edu) is with the Dept. of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX.

Journal of Motor Learning and Development
Article Sections
References
  • AndersonD.I.MagillR.A.SekiyaH. & RyanG. (2005). Support for an explanation of the guidance effect in motor skill learning. Journal of Motor Behavior 37231238. PubMed ID: 15883120 doi:10.3200/JMBR.37.3.231-238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaudryL.LeroyD.ThouvarecqR. & CholletD. (2007). Auditory concurrent feedback benefits on the circle performed in gymnastics. Journal of Sports Sciences 24149156. doi:10.1080/02640410500130979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BehrmanA.L.Vander LindenD.W. & CauraughJ.H. (1992). Relative frequency knowledge of results: Older adults learning a force-time modulation task. Journal of Human Movement Studies 23233250.

    • Search Google Scholar
    • Export Citation
  • CarnahanH.VandervoortA.A. & SwansonL.R. (1996). The influence of summary knowledge of results and aging on motor learning. Research Quarterly for Exercise and Sport 67280287. PubMed ID: 8888416 doi:10.1080/02701367.1996.10607955

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarrK.ZachariahN.WeirP. & McNevinN. (2011). An examination of feedback use in rehabilitation settings. Critical Reviews in Physical and Rehabilitation Medicine 23147160. doi:10.1615/CritRevPhysRehabilMed.v23.i1-4.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChiviacowskyS.CamposT. & DominguesM.R. (2010). Reduced frequency of knowledge of results enhances learning in persons with Parkinson’s disease. Frontiers in Psychology 1226. PubMed ID: 21833281 doi:10.3389/fpsyg.2010.00226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoodwinJ.E.EckersonJ.M. & VollC.A.Jr. (2001). Testing specificity and guidance hypotheses by manipulating relative frequency of KR scheduling in motor skill acquisition. Perceptual and Motor Skills 93819824. PubMed ID: 11806606 doi:10.2466/pms.2001.93.3.819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoodwinJ.E. & GogginN.L. (2018). An older adult study of concurrent visual feedback in learning continuous balance. Perceptual and Motor Skills 125(6) 11601172. PubMed ID: 30193556 doi:10.1177/0031512518795758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoodwinJ.E. & MeeuwsenH.J. (1995). Using bandwidth knowledge of results to alter relative frequencies during motor skill acquisition. Research Quarterly for Exercise and Sport 6699104. PubMed ID: 7644839 doi:10.1080/02701367.1995.10762217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IshikuraT. (2008). Reduced relative frequency of knowledge of results without visual feedback in learning a golf-putting task. Perceptual and Motor Skills 106225233. PubMed ID: 18459371 doi:10.2466/pms.106.1.225-233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KonttinenN.MononenK.ViitasaloJ. & MetsT. (2004). The effects of augmented auditory feedback on psychomotor skill learning in precision shooting. Journal of Sport and Exercise Psychology 26306316. doi:10.1123/jsep.26.2.306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaiQ. & SheaC.H. (1999). The role of reduced frequency of knowledge of results during constant practice. Research Quarterly for Exercise and Sport 703340. PubMed ID: 10100333 doi:10.1080/02701367.1999.10607728

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MagillR.A. (2001). Augmented feedback in motor skill acquisition. In R.N. SingerH.A. Hausenblas & C.J. Janelle (Eds.) Handbook of sport psychology (pp. 86114). New York, NY: John Wiley & Sons, Inc.

    • Search Google Scholar
    • Export Citation
  • NicholsonD.E. & SchmidtR.A. (1991). Scheduling information feedback to enhance training effectiveness [Summary]. Proceedings of the Human Factors Society 35th Annual Meeting (pp. 14001402).

    • Search Google Scholar
    • Export Citation
  • ParkJ.SheaC.H. & WrightD.L. (2000). Reduced-frequency concurrent and terminal feedback: A test of the guidance hypothesis. Journal of Motor Behavior 32287296. PubMed ID: 10975276 doi:10.1080/00222890009601379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SalmoniA.W.SchmidtR.A. & WalterC.B. (1984). Knowledge of results and motor learning: A review and critical appraisal. Psychological Bulletin 95355386. PubMed ID: 6399752 doi:10.1037/0033-2909.95.3.355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR.A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In G.E. Stelmach & J. Requin (Eds.) Tutorials in motor neuroscience (pp. 5976). Dordrecht, The Netherlands: Kluwer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR.A.LeeT.D.WinsteinC.J.WulfG. & ZelaznikH.N. (2019). Motor control and learning: A behavioral emphasis (6th ed.). Champaign, ILHuman Kinetics.

    • Search Google Scholar
    • Export Citation
  • SigristR.RauterG.RienerR. & WolfP. (2013a). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review 202153. doi:10.3758/s13423-012-0333-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SigristR.RauterG.RienerR. & WolfP. (2013b). Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task. Journal of Motor Behavior 45455472. doi:10.1080/00222895.2013.826169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TodorovE.ShadmehrR. & BizziE. (1997). Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. Journal of Motor Behavior 29(2) 147158. PubMed ID: 12453791 doi:10.1080/00222899709600829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vander LindenD.W.CauraughJ.H. & GreeneT.A. (1993). The effect of frequency of kinetic feedback on learning an isometric force production task in nondisabled subjects. Physical Therapy 737987. PubMed ID: 8421721 doi:10.1093/ptj/73.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinsteinC.J.PohlP.S.CardinaleC.GreenA.ScholtzL. & WatersC.S. (1996). Learning a partial weight bearing skill: Effectiveness of two forms of feedback. Physical Therapy 76985993. PubMed ID: 8790276 doi:10.1093/ptj/76.9.985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinsteinC.J. & SchmidtR.A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning Memory and Cognition 16677691. doi:10.1037/0278-7393.16.4.677

    • Search Google Scholar
    • Export Citation
  • WulfG. & SheaC.H. (2004). Understanding the role of augmented feedback: The good, the bad, and the ugly. In A.M. Williams& N.J. Hodges (Eds.) Skill acquisition in sport: Research theory and practice (pp. 121144). London, UK: Routledge.

    • Search Google Scholar
    • Export Citation
  • YaoW.FischmanM.G. & WangY.T. (1994). Motor skill acquisition and retention as a function of average feedback, summary feedback, and performance variability. Journal of Motor Behavior 26273282. PubMed ID: 15757843 doi:10.1080/00222895.1994.9941683

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 48 48 17
Full Text Views 3 3 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar