A Case for Using Hierarchical Linear Modeling in Exercise Science Research

Click name to view affiliation

Sid Mitchell University of Maine

Search for other papers by Sid Mitchell in
Current site
Google Scholar
PubMed
Close
*
,
E. Michael Loovis Cleveland State University

Search for other papers by E. Michael Loovis in
Current site
Google Scholar
PubMed
Close
*
, and
Stephen A. Butterfield University of Maine

Search for other papers by Stephen A. Butterfield in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Analyzing data in the exercise sciences can be challenging when trying to account for physical changes brought about by maturation (e.g., growth in height, weight, heart/lung capacity, muscle-to-fat ratio). In this paper, we present an argument for using hierarchical linear modeling (HLM) as an approach to analyzing physical performance data. Using an applied example from Butterfield, Lehnhard, Lee, and Coladarci, we will show why HLM is an appropriate analysis technique and provide other examples of where HLM will be beneficial.

Mitchell and Butterfield are with the University of Maine, Orono, ME. Loovis is with Cleveland State University, Cleveland, OH.

Butterfield (stephen.butterfield@maine.edu) is corresponding author.
  • Collapse
  • Expand
  • Berger, K. (2018). The developing person: through childhood and adolescence (11th ed.). New York, NY: Macmillan.

  • Bryk, A.S., & Raudenbush, S.W. (2002). Hierarchical linear models: applications and data analysis methods. Newbury Park, CA: Sage.

  • Butterfield, S.A., Lehnhard, R.A., Lee, J., & Coladarci, T. (2004). Running speed and vertical jumping by boys and girls ages 11-14. Perceptual and Motor Skills, 99, 225234.

    • Search Google Scholar
    • Export Citation
  • Butterfield, S.A., Lehnhard, R.A., Mason, C.A., & McCormick, R. (2008). Aerobic performance by children in grades 4-8: A repeated measures study. Perceptual and Motor skills, 107, 775790. PubMed ID: 19235407 doi:10.2466/PMS.107.7.775-790

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, R.S. (2016). Child Development (7th ed.). Boston, MA: Pearson.

  • Motor Development Task Force. (1995). Looking at physical education from a developmental perspective: A guide to teaching. Reston, VA: National Association for Sports and Physical Education.

    • Search Google Scholar
    • Export Citation
  • Muthen, B.O., & Khoo, S. (1998). Longitudinal studies of achievement growth using latent variable modeling. Learning and Individual Differences, 10(2), 73101. doi:10.1016/S1041-6080(99)80135-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, G.V., & Isaacs, L.D. (2012). Human Motor Development: a lifespan approach. New York, NY: McGraw-Hill.

  • Raudenbush, S.W., Bryk, S., Cheong, Y.F., & Congdon, R. (2004). Hierarchical linear and nonlinear modeling. Chicago, IL: Scientific Software International.

    • Search Google Scholar
    • Export Citation
  • Weinfurt, K. (2000). Repeated measures analyses: ANOVA, MANOVA and HLM. In L. Grimm & P. Yarnold (Eds.), Reading and understanding more multivariate statistics (pp. 317361). Washington, DC: American Psychological Association.

    • Search Google Scholar
    • Export Citation
  • Woltman, H., Feldstein, J., MacKay, C., & Rocchi, M. (2012). An introduction to hierarchical liner modeling. Tutorials in Quantitative Methods for Psychology, 8(1), 5269. doi:10.20982/tqmp.08.1.p052

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1923 94 24
Full Text Views 21 13 4
PDF Downloads 17 7 0