Sequence Structure Has a Differential Effect on Underlying Motor Learning Processes

in Journal of Motor Learning and Development
View More View Less
  • 1 University of Maryland
  • 2 Washington State University
  • 3 Johns Hopkins University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $42.00

1 year online subscription

USD  $56.00

Student 2 year online subscription

USD  $80.00

2 year online subscription

USD  $107.00

Current methods to understand implicit motor sequence learning inadequately assess motor skill acquisition in daily life. Using fixed sequences in the serial reaction time task is not ideal as participants may become aware of the sequence, thereby changing the learning from implicit to explicit. Probabilistic sequences, in which stimuli are linked by statistical, rather than deterministic, associations can ensure that learning remains implicit. Additionally, the processes underlying the learning of motor sequences may differ based on sequence structure. Here, the authors compared the learning of fixed and probabilistic sequences to randomly ordered stimuli using a modified serial reaction time task. Both the fixed and probabilistic sequence groups exhibited learning as indicated by decreased response time and variability. In the initial stage of learning, fixed sequences exhibited both online and offline gains in response time; however, only the offline gain was observed during the learning of probabilistic sequences. These results indicated that probabilistic structures may be learned differently from fixed structures and have important implications for our current understanding of motor learning. Probabilistic sequences more accurately reflect motor skill acquisition in daily life, offer ecological validity to the serial reaction time framework, and advance our understanding of motor learning.

Prashad and Clark are with the Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA. Prashad, Du, and Clark are with the Department of Kinesiology, University of Maryland, College Park, MD, USA. Prashad is now with the Department of Kinesiology and Educational Psychology, Washington State University, Pullman, WA, USA. Du is now with the Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.

Prashad (s.prashad@wsu.edu) is corresponding author.
  • Armstrong, T., & Bull, F. (2006). Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). Journal of Public Health, 14(2), 6670. doi:10.1007/s10389-006-0024-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, I.J., Howard, J.H., Jr., & Howard, D.V. (2007). Age-related differences in implicit learning of subtle third-order sequential structure. The Journals of Gerontology, Series B: Psychological Sciences & Social Sciences, 62(2), P98P103. doi:10.1093/geronb/62.2.P98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bo, J., & Seidler, R.D. (2009). Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences. Journal of Neurophysiology, 101(6), 31163125. PubMed ID: 19357338 doi:10.1152/jn.00006.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bönstrup, M., Iturrate, I., Hebart, M.N., Censor, N., & Cohen, L.G. (2020). Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ Science of Learning, 5(1), 7. PubMed ID: 32550003 doi:10.1038/s41539-020-0066-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bönstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L.G. (2019). A rapid form of offline consolidation in skill learning. Current Biology, 29(8), 13461351.e4. PubMed ID: 30930043 doi:10.1016/j.cub.2019.02.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, A.M., & Daw, N.D. (2012). Dissociating hippocampal and striatal contributions to sequential prediction learning: Sequential predictions in hippocampus and striatum. European Journal of Neuroscience, 35(7), 10111023. PubMed ID: 22487032 doi:10.1111/j.1460-9568.2011.07920.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, A.M., & Daw, N.D. (2013). Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans. PLoS Computational Biology, 9(12), e1003387. PubMed ID: 24339770 doi:10.1371/journal.pcbi.1003387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252255. PubMed ID: 8717039 doi:10.1038/382252a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R.M., & Robertson, E.M. (2007). Inducing motor skill improvements with a declarative task. Nature Neuroscience, 10(2), 148149. PubMed ID: 17237776 doi:10.1038/nn1836

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Censor, N., Sagi, D., & Cohen, L.G. (2012). Common mechanisms of human perceptual and motor learning. Nature Reviews Neuroscience, 13(9), 658664. PubMed ID: 22903222 doi:10.1038/nrn3315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleeremans, A., & McClelland, J.L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology: General, 120(3), 235253. doi:10.1037/0096-3445.120.3.235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleeremans, A., Servan-Schreiber, D., & McClelland, J.L. (1989). Finite state automata and simple recurrent networks. Neural Computation, 1(3), 372381. doi:10.1162/neco.1989.1.3.372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, R.G., & Sternad, D. (2009). Variability in motor learning: Relocating, channeling and reducing noise. Experimental Brain Research, 193(1), 6983. PubMed ID: 18953531 doi:10.1007/s00221-008-1596-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, T. (1997). Effects of aging on implicit sequence learning: Accounting for sequence structure and explicit knowledge. Psychological Research, 60(1–2), 2441. PubMed ID: 9225617 doi:10.1007/BF00419678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCoster, J., & O’Mally, J. (2011). Specific sequence effects in the serial reaction time task. Journal of Motor Behavior, 43(3), 263273. PubMed ID: 21598158 doi:10.1080/00222895.2011.574171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, N.A., Howard, J.H., Jr., & Howard, D.V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175(1), 153164. PubMed ID: 16788812 doi:10.1007/s00221-006-0534-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343350. PubMed ID: 11495124 doi:10.3758/BF03196171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhawale, A.K., Miyamoto, Y.R., Smith, M.A., & Ölveczky, B.P. (2019). Adaptive regulation of motor variability. Current Biology, 29(21), 35513562.e7. PubMed ID: 31630947 doi:10.1016/j.cub.2019.08.052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhawale, A.K., Smith, M.A., & Ölveczky, B.P. (2017). The role of variability in motor learning. Annual Review of Neuroscience, 40(1), 479498. PubMed ID: 28489490 doi:10.1146/annurev-neuro-072116-031548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., & Clark, J.E. (2016). New insights into statistical learning and chunk learning in implicit sequence acquisition. Psychonomic Bulletin & Review, 24(4), 12251233. PubMed ID: 27812961 doi:10.3758/s13423-016-1193-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., & Clark, J.E. (2020). Beyond the mean reaction time: Trial-by-trial reaction time reveals the distraction effect on perceptual-motor sequence learning. Cognition, 202, 104287. PubMed ID: 32353467 doi:10.1016/j.cognition.2020.104287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Prashad, S., Schoenbrun, I., & Clark, J.E. (2016). Probabilistic motor sequence yields greater offline and less online learning than fixed sequence. Frontiers in Human Neuroscience, 10, 87. doi:10.3389/fnhum.2016.00087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Valentini, N.C., Kim, M.J., Whitall, J., & Clark, J.E. (2017). Children and adults both learn motor sequences quickly, but do so differently. Frontiers in Psychology, 8, 158. doi:10.3389/fpsyg.2017.00158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feeney, J.J., Howard, J.H., Jr., & Howard, D.V. (2002). Implicit learning of higher order sequences in middle age. Psychology and Aging, 17(2), 351355. PubMed ID: 12061417 doi:10.1037/0882-7974.17.2.351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handa, A., Rhee, J., & Wright, D.L. (2016). The structural relationship between two motor sequences practiced close in time impacts offline facilitation. Journal of Motor Behavior, 48(1), 4756. PubMed ID: 26020122 doi:10.1080/00222895.2015.1035431

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzfeld, D.J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17(2), 149150. PubMed ID: 24473260 doi:10.1038/nn.3633

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillman, C.H., Erickson, K.I., & Kramer, A.F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotermans, C., Peigneux, P., Maertens de Noordhout, A., Moonen, G., & Maquet, P. (2006). Early boost and slow consolidation in motor skill learning. Learning & Memory, 13(5), 580583. PubMed ID: 16980543 doi:10.1101/lm.239406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, D.V., & Howard, J.H., Jr. (2001). When it does hurt to try: Adult age differences in the effects of instructions on implicit pattern learning. Psychonomic Bulletin & Review, 8(4), 798805. PubMed ID: 11848602 doi:10.3758/BF03196220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, D.V., Howard, J.H., Jr., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004). Implicit sequence learning: Effects of level of structure, adult age, and extended practice. Psychology and Aging, 19(1), 7992. PubMed ID: 15065933 doi:10.1037/0882-7974.19.1.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, J.H., Jr., & Howard, D.V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12(4), 634656. PubMed ID: 9416632 doi:10.1037/0882-7974.12.4.634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeggi, S.M., Buschkuehl, M., Jonides, J., & Perrig, W.J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 68296833. PubMed ID: 18443283 doi:10.1073/pnas.0801268105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, L., & Mendez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 236259

    • Search Google Scholar
    • Export Citation
  • Jiménez, L., Méndez, C., & Cleeremans, A. (1996). Comparing direct and indirect measures of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 948969. doi:10.1037//0278-7393.22.4.948

    • Search Google Scholar
    • Export Citation
  • Kitago, T., & Krakauer, J.W. (2013). Motor learning principles for neurorehabilitation. Handbook of Clinical Neurology, 110, 93103. PubMed ID: 23312633 doi:10.1016/B978-0-444-52901-5.00008-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laming, D.R.J. (1969). Subjective probability in choice-reaction experiments. Journal of Mathematical Psychology, 6(1), 81120. doi:10.1016/0022-2496(69)90030-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., & Wright, D.L. (2000). An assessment of the attention demands during random- and blocked-practice schedules. The Quarterly Journal of Experimental Psychology, 53A(2), 591606. doi:10.1080/713755890

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malone, L.A., & Bastian, A.J. (2010). Thinking about walking: Effects of conscious correction versus distraction on locomotor adaptation. Journal of Neurophysiology, 103(4), 19541962. PubMed ID: 20147417 doi:10.1152/jn.00832.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisello, C., Crupi, D., Tunik, E., Quartarone, A., Bove, M., Tononi, G., & Ghilardi, M.F. (2009). The serial reaction time task revisited: A study on motor sequence learning with an arm-reaching task. Experimental Brain Research, 194(1), 143155. PubMed ID: 19104787 doi:10.1007/s00221-008-1681-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1991). Motor skill acquisition. Annual Review of Psychology, 42(1), 213237. PubMed ID: 2018394 doi:10.1146/annurev.ps.42.020191.001241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., Mayer-Kress, G., Hong, S.L., & Liu, Y.-T. (2009). Adaptation and learning: Characteristic time scales of performance dynamics. Human Movement Science, 28(6), 655687. PubMed ID: 19682761 doi:10.1016/j.humov.2009.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., Mayer-Kress, G., & Liu, Y.-T. (2001). Time scales in motor learning and development. Psychological Review, 108(1), 5782. PubMed ID: 11212633 doi:10.1037/0033-295X.108.1.57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M., & Shapiro, D.C. (1976). Variability of practice and transfer of training: Some evidence toward a schema view of motor learning. Journal of Motor Behavior, 8(3), 233243. PubMed ID: 23964580 doi:10.1080/00222895.1976.10735077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissen, M.J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 132. doi:10.1016/0010-0285(87)90002-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peigneux, P., Maquet, P., Meulemans, T., Destrececqz, A., Laureys, S., Degueldre, C., … Cleeremans, A. (2000). Striatum forever, despite sequence learning variability: A random effect analysis of PET data. Human Brain Mapping, 10(4), 179194. PubMed ID: 10949055 doi:10.1002/1097-0193(200008)10:4<179::AID-HBM30>3.0.CO;2-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510532. PubMed ID: 8272468 doi:10.1037/0033-2909.114.3.510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reber, A.S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855863. doi:10.1016/S0022-5371(67)80149-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reber, A.S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3), 219235. doi:10.1037/0096-3445.118.3.219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 585594. doi:10.1037/0278-7393.20.3.585

    • Search Google Scholar
    • Export Citation
  • Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., … Krakauer, J.W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 15901595. PubMed ID: 19164589 doi:10.1073/pnas.0805413106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhee, J., Chen, J., Riechman, S.M., Handa, A., Bhatia, S., & Wright, D.L. (2016). An acute bout of aerobic exercise can protect immediate offline motor sequence gains. Psychological Research, 80(4), 518531. PubMed ID: 26115758 doi:10.1007/s00426-015-0682-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, E.M. (2007). The serial reaction time task: Implicit motor skill learning? Journal of Neuroscience, 27(38), 1007310075. PubMed ID: 17881512 doi:10.1523/JNEUROSCI.2747-07.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, E.M., Pascual-Leone, A., & Miall, R.C. (2004). Current concepts in procedural consolidation. Nature Reviews Neuroscience, 5(7), 576582. PubMed ID: 15208699 doi:10.1038/nrn1426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, R., Schabus, M., Perrin, F., Luxen, A., Maquet, P., & Peigneux, P. (2009). Recurrent boosting effects of short inactivity delays on performance: An ERPs study. BMC Research Notes, 2(1), 170. PubMed ID: 19709401 doi:10.1186/1756-0500-2-170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schvaneveldt, R.W., & Gomez, R.L. (1998). Attention and probabilistic sequence learning. Psychological Research, 61(3), 175190. doi:10.1007/s004260050023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seger, C.A. (1994). Implicit learning. Psychological Bulletin, 115(2), 163196. PubMed ID: 8165269 doi:10.1037/0033-2909.115.2.163

  • Seidler, R.D. (2007). Older adults can learn to learn new motor skills. Behavioural Brain Research, 183(1), 118122. PubMed ID: 17602760 doi:10.1016/j.bbr.2007.05.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, J.B., & Morgan, R.L. (1979). Contextual interference effects on the acquisition, retention, and transfer of motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5, 179187. doi:10.1037/0278-7393.5.2.179

    • Search Google Scholar
    • Export Citation
  • Snow, N.J., Mang, C.S., Roig, M., McDonnell, M.N., Campbell, K.L., & Boyd, L.A. (2016). The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS One, 11(2), e0150039. PubMed ID: 26901664 doi:10.1371/journal.pone.0150039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, S., Howard, J.H., & Howard, D.V. (2007). Sleep does not benefit probabilistic motor sequence learning. Journal of Neuroscience, 27(46), 1247512483. PubMed ID: 18003825 doi:10.1523/JNEUROSCI.2062-07.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stadler, M.A. (1992). Statistical structure and implicit serial learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 318327. doi:10.1037/0278-7393.18.2.318

    • Search Google Scholar
    • Export Citation
  • Stadler, M.A., & Frensch, P.A. (Eds.). (1998). Handbook of implicit learning. Thousand Oaks, CA: Sage Publications.

  • Statton, M.A., Encarnacion, M., Celnik, P., & Bastian, A.J. (2015). A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One, 10(10), e0141393. PubMed ID: 26506413 doi:10.1371/journal.pone.0141393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Török, B., Janacsek, K., Nagy, D.G., Orbán, G., & Nemeth, D. (2017). Measuring and filtering reactive inhibition is essential for assessing serial decision making and learning. Journal of Experimental Psychology: General, 146(4), 529542. doi:10.1037/xge0000288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verstynen, T., Phillips, J., Braun, E., Workman, B., Schunn, C., & Schneider, W. (2012). Dynamic sensorimotor planning during long-term sequence learning: The role of variability, response chunking and planning errors. PLoS One, 7(10), e47336. PubMed ID: 23056630 doi:10.1371/journal.pone.0047336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35(1), 205211. PubMed ID: 12123620 doi:10.1016/S0896-6273(02)00746-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, M.P., Brakefield, T., Seidman, J., Morgan, A., Hobson, J.A., & Stickgold, R. (2003). Sleep and the time course of motor skill learning. Learning & Memory, 10(4), 275284. PubMed ID: 12888546 doi:10.1101/lm.58503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58(3), 475482. doi:10.1007/BF03395630

  • Willingham, D.B., Greenberg, A.R., & Thomas, R.C. (1997). Response-to-stimulus interval does not affect implicit motor sequence learning, but does affect performance. Memory & Cognition, 25(4), 534542. PubMed ID: 9259630 doi:10.3758/BF03201128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willingham, D.B., Nissen, M.J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 10471060. PubMed ID: 2530305 doi:10.1037//0278-7393.15.6.1047

    • Search Google Scholar
    • Export Citation
  • Wu, H.G., Miyamoto, Y.R., Castro, L.N.G., Ölveczky, B.P., & Smith, M.A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312321. PubMed ID: 24413700 doi:10.1038/nn.3616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., & Schmidt, R.A. (1997). Variability of practice and implicit motor learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4), 9871006. doi:10.1037/0278-7393.23.4.987

    • Search Google Scholar
    • Export Citation
  • Wymbs, N.F., Bassett, D.S., Mucha, P.J., Porter, M.A., & Grafton, S.T. (2012). Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron, 74(5), 936946. PubMed ID: 22681696 doi:10.1016/j.neuron.2012.03.038

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 301 301 150
Full Text Views 243 243 5
PDF Downloads 62 62 5