Changes in Muscle Control After Learning to Direct Pedal Forces in One-Legged Pedaling

in Journal of Motor Learning and Development
View More View Less
  • 1 University of Massachusetts Amherst
  • | 2 Korea University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $42.00

1 year online subscription

USD  $56.00

Student 2 year online subscription

USD  $80.00

2 year online subscription

USD  $107.00

The aim of this study was to describe how major leg muscle activities are altered after learning a novel one-legged pedaling task. Fifteen recreational cyclists practiced one-legged pedaling trials during which they were instructed to match their applied pedal force to a target direction perpendicular to the crank arm. Activity in 10 major leg muscles was measured with surface electromyography electrodes. Improved upstroke task performance was obtained by greater activity in the hip and ankle flexor muscles, counteracting the negative effects of gravity. Greater quadriceps activities explained improved targeting near top dead center. Reduced uniarticular knee and ankle extensor downstroke activities were necessary to prevent freewheeling. Greater hamstring and tibialis anterior activities improved targeting performance near the bottom of the pedal stroke. The activity patterns of the biarticular plantarflexors changed little, likely due to their contributions as knee flexors for smooth upstroke pedaling motion. These results add to our understanding of how the degrees of freedom at the muscle level are altered in a cooperative manner to overcome gravitational effects in order to achieve the learning goal of the motor task while satisfying multiple constraints—in this case, the production of smooth one-legged pedaling motion at the designated mechanical task demands.

Park, Van Emmerik, and Caldwell are with the Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA. Park is also with the College of Medicine, Korea University, Seoul, South Korea.

Park (sangsoo.park1739@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 249 KB)
  • Anderson, D.I., Magill, R.A., Sekiya, H., & Ryan, G. (2005). Support for an explanation of the guidance effect in motor skill learning. Journal of Motor Behavior, 37(3), 231238. PubMed ID: 15883120 doi:10.3200/JMBR.37.3.231-238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Pergamon Press.

  • Bini, R., Hume, P., Croft, J.L., & Kilding, A. (2013). Pedal force effectiveness in cycling: A review of constraints and training effects. Journal of Science and Cycling, 2(1), 1124.

    • Search Google Scholar
    • Export Citation
  • Bini, R.R., Hume, P.A., & Crofta, J.L. (2011). Effects of saddle height on pedal force effectiveness. Procedia Engineering, 2(1), 1124. doi:10.1016/j.proeng.2011.05.050

    • Search Google Scholar
    • Export Citation
  • Bini, R.R., Jacques, T.C., & Vaz, M.A. (2016). Joint torques and patellofemoral force during single-leg assisted and unassisted cycling. Journal of Sport Rehabilitation, 25(1), 4047. PubMed ID: 25474095 doi:10.1123/jsr.2014-0252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, H., Siebert, S., & Walsh, M. (2008). Effects of short-term training using SmartCranks on cycle work distribution and power output during cycling. European Journal of Applied Physiology, 103(2), 225232. PubMed ID: 18273633 doi:10.1007/s00421-008-0692-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broker, J.P., & Gregor, R.J. (1990). A dual piezoelectric element force pedal for kinetic analysis of cycling. International Journal of Sports Biomechanics, 6(4), 394403. doi:10.1123/ijsb.6.4.394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broker, J.P., Gregor, R.J., & Schmidt, R.A. (1993). Extrinsic Feedback and the Learning of Kinetic Patterns in Cycling. Journal of Applied Biomechanics, 9(2), 111123. doi:10.1123/jab.9.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childers, W.L., & Gregor, R.J. (2011). Effectiveness of force production in persons with unilateral transtibial amputation during cycling. Prosthetics and Orthotics International, 35(4), 373378. PubMed ID: 21998095 doi:10.1177/0309364611423129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christina, R.W. (1997). Concerns and issues in studying and assessing motor learning. Measurement in Physical Education and Exercise Science, 1(1), 1938. doi:10.1207/s15327841mpee0101_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, L.H., Angelo, J., van Emmerik, R.E.A., & Kent, J.A. (2016). Energy cost of walking, symptomatic fatigue and perceived exertion in persons with multiple sclerosis. Gait & Posture, 48, 215219. PubMed ID: 27318306 doi:10.1016/j.gaitpost.2016.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J.: L. Erlbaum Associates.

  • Corcos, D.M., Jaric, S., Agarwal, G.C., & Gottlieb, G.L. (1993). Principles for learning single-joint movements. Experimental Brain Research, 94(3), 499513. PubMed ID: 8359264 doi:10.1007/BF00230208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R.R., & Hull, M.L. (1981). Measurement of pedal loading in bicycling: II. Analysis and results. Journal of Biomechanics, 14(12), 857872. PubMed ID: 7328092 doi:10.1016/0021-9290(81)90013-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Marchis, C., Schmid, M., Bibbo, D., Castronovo, A.M., D’Alessio, T., & Conforto, S. (2013). Feedback of mechanical effectiveness induces adaptations in motor modules during cycling. Frontiers in Computational Neuroscience, 7(April), 35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorel, S., Drouet, J.M., Couturier, A., Champoux, Y., & Hug, F. (2009). Changes of pedaling technique and muscle coordination during an exhaustive exercise. Medicine and Science in Sports and Exercise, 41(6), 12771286. PubMed ID: 19461537 doi:10.1249/MSS.0b013e31819825f8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbons, R.D., Hedeker, D.R., & Davis, J.M. (1993). Estimation of Effect Size From a Series of Experiments Involving Paired Comparisons. Journal of Educational Statistics, 18(3), 271279. doi:10.3102/10769986018003271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, C.J., Caldwell, G.E., & Van Emmerik, R.E.A. (2008). Changes in muscle and joint coordination in learning to direct forces. Human Movement Science, 27(4), 590609. PubMed ID: 18405988 doi:10.1016/j.humov.2008.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobart, D.J., Kelley, D.L., & Bradley, L.S. (1975). Modifications occurring during acquisition of a novel throwing task. American Journal of Physical Medicine & Rehabilitation, 54(1), 124.

    • Search Google Scholar
    • Export Citation
  • Holderbaum, G.G., Carlos, A., Guimarães, S., Demétrio, R., & Petersen, D.S. (2009). The use of augmented visual feedback on the learning of the recovering phase of pedaling. Brazilian Journal of Motor Behavior, 4(1), 17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.J., Kram, R., & Ahmed, A.A. (2012). Reduction of metabolic cost during motor learning of arm reaching dynamics. Journal of Neuroscience, 32(6), 21822190. PubMed ID: 22323730 doi:10.1523/JNEUROSCI.4003-11.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hug, F., Boumier, F., & Dorel, S. (2013). Altered muscle coordination when pedaling with independent cranks. Frontiers in Physiology, 4, 232. PubMed ID: 24009587 doi:10.3389/fphys.2013.00232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kargo, W.J., & Nitz, D.A. (2003). Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. The Journal of Neuroscience, 23(35), 1125511269. doi:10.1523/JNEUROSCI.23-35-11255.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kautz, S.A., & Hull, M.L. (1993). A theoretical basis for interpreting the force applied to the pedal in cycling. Journal of Biomechanics, 26(2), 155165. PubMed ID: 8429058 doi:10.1016/0021-9290(93)90046-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korff, T., Romer, L.M., Mayhew, I.A.N., & Martin, J.C. (2007). Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Medicine & Science in Sports & Exercise, 39(6), 991995. PubMed ID: 17545890 doi:10.1249/mss.0b013e318043a235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A.K.M., Arnold, A.S., & Wakeling, J.M. (2017). Why are Antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor tasks. Annals of Biomedical Engineering, 45(12), 27622774. PubMed ID: 28900782 doi:10.1007/s10439-017-1920-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lay, B.S., Sparrow, W.A., Hughes, K.M., & O’Dwyer, N.J. (2002). Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Human Movement Science, 21(5–6), 807830. PubMed ID: 12620721 doi:10.1016/S0167-9457(02)00166-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, K.A., Hicks, G., & Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291298. PubMed ID: 2062970 doi:10.1016/0165-1781(91)90027-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masood, T., Bojsen-Møller, J., Kalliokoski, K.K., Kirjavainen, A., Äärimaa, V., Magnusson, S. P., & Finni, T. (2014). Differential contributions of ankle plantarflexors during submaximal isometric muscle action: A PET and EMG study. Journal of Electromyography and Kinesiology, 24(3), 367374. PubMed ID: 24717406 doi:10.1016/j.jelekin.2014.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mornieux, G., Stapelfeldt, B., Gollhofer, A., & Belli, A. (2008). Effects of pedal type and pull-up action during cycling. International Journal of Sports Medicine, 29(10), 817822. PubMed ID: 18418807 doi:10.1055/s-2008-1038374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neptune, R.R., Kautz, S.A., & Zajac, F.E. (2000). Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. Journal of Biomechanics, 33(2), 155164. PubMed ID: 10653028 doi:10.1016/S0021-9290(99)00150-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., & Caldwell, G.E. (2020). Muscular activity patterns in one-legged versus two-legged pedaling. Journal of Sport and Health Science, 10(1), 99106. doi:10.1016/j.jshs.2020.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Development Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/

    • Search Google Scholar
    • Export Citation
  • Raasch, C.C., & Zajac, F.E. (1999). Locomotor strategy for pedaling: Muscle groups and biomechanical functions. Journal of Neurophysiology, 82(2), 515525. PubMed ID: 10444651 doi:10.1152/jn.1999.82.2.515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, C.C., Zajac, F.E., Ma, B., & Levine, W.S. (1997). Muscle coordination of maximum-speed pedaling. Journal of Biomechanics, 30(6), 595602. doi:10.1016/S0021-9290(96)00188-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemann, B.L., Limbaugh, G.K., Eitner, J.D., & LeFavi, R.G. (2011). Medial and lateral gastrocnemius activation differences during heel-raise exercise with three different foot positions. The Journal of Strength & Conditioning Research, 25(3), 634639. PubMed ID: 20581696 doi:10.1519/JSC.0b013e3181cc22b8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, L.M., Brown, D.A., & Gruben, K.G. (2004). Foot force direction control during leg pushes against fixed and moving pedals in persons post-stroke. Gait & Posture, 19(1), 5868. PubMed ID: 14741304 doi:10.1016/S0966-6362(03)00009-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, D., & Cavanagh, P. (1990). Use of augmented feedback for the modification of the pedaling mechanics of cyclists. Canadian Journal of Sport Sciences, 15, 3842. PubMed ID: 2331636

    • Search Google Scholar
    • Export Citation
  • Sanderson, D.J. (1991). The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists. Journal of Sports Sciences, 9(2), 191203. doi:10.1080/02640419108729880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, N.J., Fischer, H.W., Bogey, R.A., Rymer, W.Z., & Kamper, D.G. (2011). Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: A pilot study. Archives of Physical Medicine and Rehabilitation, 92(1), 2430. PubMed ID: 21092931 doi:10.1016/j.apmr.2010.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparrow, W.A., & Newell, K.M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin & Review, 5(2), 173196. doi:10.3758/BF03212943

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torchiano, M. (2017). effsize: Efficient effect size computation. R Package Version 0.7.1. Retrieved from https://cran.r-project.org/package=effsize

    • Search Google Scholar
    • Export Citation
  • Van Deursen, R.W.M., Cavanagh, P.R., van Ingen Schenau, G.J., Becker, M.B., & Ulbrecht, J.S. (1998). The role of cutaneous information in a contact control task of the leg in humans. Human Movement Science, 17(1), 95120. doi:10.1016/S0167-9457(97)00026-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vereijken, B., Van Emmerik, R.E.A., Bongaardt, R., Beek, W.J., & Newell, K.M. (1997). Changing coordinative structures in complex skill acquisition. Human Movement Science, 16(6), 823844. doi:10.1016/S0167-9457(97)00021-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, F.E., Neptune, R.R., & Kautz, S.A. (2003). Biomechanics and muscle coordination of human walking: Part II: Lessons from dynamical simulations and clinical implications. Gait & Posture, 17(1), 117. PubMed ID: 12535721 doi:10.1016/S0966-6362(02)00069-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 16 16 16
Full Text Views 2 2 2
PDF Downloads 4 4 4