Construct Validity and Reliability of the Revised Physical and Neurological Examination of Subtle Signs (PANESS) Gaits and Stations Measures

in Journal of Motor Learning and Development
View More View Less
  • 1 Kennedy Krieger Institute
  • | 2 Johns Hopkins University School of Medicine
  • | 3 State University of New York at Buffalo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $42.00

1 year online subscription

USD  $56.00

Student 2 year online subscription

USD  $80.00

2 year online subscription

USD  $107.00

Purpose: To facilitate precise diagnosis and provide tailored treatment of postural anomalies in the pediatric population, appropriate assessments are essential. In light of the multicomponent structure of postural control, understanding underlying constructs of an assessment is valuable in selecting and interpreting assessments. This study investigates the construct validity of the Gaits and Stations variables in the Revised Physical and Neurological Examination of Subtle Signs, a measure used to evaluate standing postural control in youth with mild neurological deficits. Methods: Data were included from 350 healthy participants ages 10–19 years old. An exploratory factor analysis with varimax rotation was performed. Individual loadings of ≥0.4 were used for factor designation. Results: Three latent factors were identified and labeled, based on evidence, as dynamic stability, movement strategies/coordination, and underlying motor systems—musculoskeletal strength. Conclusions: These brief, easily administered Gaits and Stations measures of the Physical and Neurological Examination of Subtle Signs facilitate evaluation of three constructs of standing postural control relevant to youth with mild neuromotor impairments. This information will potentially assist in clinical practice to identify youth with postural control deficits and establish developmentally appropriate interventions and in research to refine understanding of pathology and the impact on components of postural control.

Saleem, Slomine, Mahone, and Suskauer are with the Kennedy Krieger Institute, Baltimore, MD, USA. Saleem, Slomine, and Suskauer are also with the Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Saleem, Langan, and McPherson are with the Department of Rehabilitation Science, State University of New York at Buffalo, Buffalo, NY, USA. Slomine and Mahone are also with the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Denckla was with the Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA. Suskauer is also with the Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Saleem (ghazalas@buffalo.edu) is corresponding author.

Supplementary Materials

    • Supplemental Material (PDF 388 KB)
  • Allum, J.H., Adkin, A.L., Carpenter, M.G., Held-Ziolkowska, M., Honegger, F., & Pierchala, K. (2001). Trunk sway measures of postural stability during clinical balance tests: Effects of a unilateral vestibular deficit. Gait & Posture, 14(3), 227237. PubMed ID: 11600326 doi:10.1016/s0966-6362(01)00132-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assaiante, C., Mallau, S., Viel, S., Jover, M., & Schmitz, C. (2005). Development of postural control in healthy children: A functional approach. Neural Plasticity, 12(2–3), 109118. PubMed ID: 16097479 doi:10.1155/NP.2005.109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, C.K. (2015). The community balance and mobility scale alleviates the ceiling effects observed in the currently used gait and balance assessments for the community-dwelling older adults. Journal of Geriatric Physical Therapy, 38(2), 7889. PubMed ID: 24949849 doi:10.1519/JPT.0000000000000024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bijlsma, A.Y., Pasma, J.H., Lambers, D., Stijntjes, M., Blauw, G.J., Meskers, C.G.M., & Maier, A.B. (2013). Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients. Journal of the American Medical Directors Association, 14(7), 493498. PubMed ID: 23540951 doi:10.1016/j.jamda.2013.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T. (2019). Structural validity of the Bruininks-Oseretsky test of motor proficiency—Second edition brief form (BOT-2-BF). Research in Developmental Disabilities, 85, 92103. PubMed ID: 30502549 doi:10.1016/j.ridd.2018.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T., & Lalor, A. (2009). The Movement Assessment Battery for Children–Second Edition (MABC-2): A review and critique. Physical & Occupational Therapy in Pediatrics, 29(1), 86103. PubMed ID: 19197761 doi:10.1080/01942630802574908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T.A., Cash, T.F., & Mikulka, P.J. (1990). Attitudinal body-image assessment: Factor analysis of the body-self relations questionnaire. Journal of Personality Assessment, 55(1–2), 135144. PubMed ID: 2231236 doi:10.1080/00223891.1990.9674053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J.A., Bialer, I., Press, M., & Winsberg, B.G. (1977). The physical and neurological examination for soft signs (PANESS): Pediatric norms and comparisons between normal and deviant boys [proceedings]. Psychopharmacology Bulletin, 13(2), 3941. PubMed ID: 859991

    • Search Google Scholar
    • Export Citation
  • Cattell, R.B. (1966). The Scree Test for the number of factors. Multivariate Behavioral Research, 1(2), 245276.

  • Chong, R.K.Y. (2008). Factor analysis of the functional limitations test in healthy individuals. Gait & Posture, 28(1), 144149. PubMed ID: 18164620 doi:10.1016/j.gaitpost.2007.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, E., Sweeney, J.K., Yocum, A., & McCoy, S.W. (2010). Effects of motor control intervention for children with idiopathic toe walking: A 5-case series. Pediatric Physical Therapy, 22(4), 417426. PubMed ID: 21068642 doi:10.1097/PEP.0b013e3181f9d5b8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, W.R., Mostofsky, S.H., Larson, J.C.G., Denckla, M.B., & Mahone, E.M. (2008). Age-related changes in motor subtle signs among girls and boys with ADHD. Neurology, 71(19), 15141520. PubMed ID: 18981373 doi:10.1212/01.wnl.0000334275.57734.5f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Condon, C., & Cremin, K. (2014). Static balance norms in children. Physiotherapy Research International: The Journal for Researchers and Clinicians in Physical Therapy, 19(1), 17. doi:10.1002/pri.1549

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crasta, J.E., Raja, A.E., Caffo, B.S., Hluchan, C.M., & Suskauer, S.J. (2020). The effect of age and competition level on subtle motor performance in adolescents medically-cleared post-concussion: Preliminary findings. American Journal of Physical Medicine & Rehabilitation.

    • Search Google Scholar
    • Export Citation
  • Deitz, J.C., Richardson, P., Atwater, S.W., Crowe, T.K., & Odiorne, M. (1991). Performance of normal children on the pediatric clinical test of sensory interaction for balance. The Occupational Therapy Journal of Research, 11(6), 336356. doi:10.1177/153944929101100602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denckla, M.B. (1985). Revised neurological examination for subtle signs (1985). Psychopharmacology Bulletin, 21(4), 773800. PubMed ID: 4089106

    • Search Google Scholar
    • Export Citation
  • Earhart, G.M. (2013). Dynamic control of posture across locomotor tasks. Movement Disorders: Official Journal of the Movement Disorder Society, 28(11), 15011508. doi:10.1002/mds.25592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, G.K., Lephart, S.M., Hwang, J.H., & Wainner, M.R.S. (2001). Hop tests as predictors of dynamic knee stability. Journal of Orthopaedic & Sports Physical Therapy, 31(10), 588597. doi:10.2519/jospt.2001.31.10.588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatters, I., Mushtaq, F., Hill, L.J.B., Holt, R.J., Wilkie, R.M., & Mon-Williams, M. (2014). The relationship between a child’s postural stability and manual dexterity. Experimental Brain Research, 232(9), 29072917. PubMed ID: 24825824 doi:10.1007/s00221-014-3947-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, B., Sycamore, N.J., McGlashan, H.L., Blanchard, C.C.V., & Holmes, N.P. (2018). Ceiling effects in the Movement Assessment Battery for Children-2 (MABC-2) suggest that non-parametric scoring methods are required. PLoS One, 13(6). doi:10.1371/journal.pone.0198426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, I., Swaine, B., & Forget, R. (2006). Exploring the comparability of the sensory organization test and the pediatric clinical test of sensory interaction for balance in children. Physical & Occupational Therapy in Pediatrics, 26(1–2), 2341. PubMed ID: 16938824 doi:10.1080/J006v26n01_04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatev, P., Thomas, S., Kepple, T., & Hallett, M. (1999). Feedforward ankle strategy of balance during quiet stance in adults. The Journal of Physiology, 514(3), 915928. doi:10.1111/j.1469-7793.1999.915ad.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gidley Larson, J.C., Mostofsky, S.H., Goldberg, M.C., Cutting, L.E., Denckla, M.B., & Mahone, E.M. (2007). Effects of gender and age on motor exam in typically developing children. Developmental Neuropsychology, 32(1), 543562. doi:10.1080/87565640701361013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouleme, N., Ezane, M.D., Wiener-Vacher, S., & Bucci, M.P. (2014). Spatial and temporal postural analysis: A developmental study in healthy children. International Journal of Developmental Neuroscience, 38, 169177. PubMed ID: 25196999 doi:10.1016/j.ijdevneu.2014.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, R.T., Shultz, S.J., Schmitz, R.J., & Perrin, D.H. (2008). Triple-hop distance as a valid predictor of lower limb strength and power. Journal of Athletic Training, 43(2), 144151. PubMed ID: 18345338 doi:10.4085/1062-6050-43.2.144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hile, E.S., Brach, J.S., Perera, S., Wert, D.M., VanSwearingen, J.M., & Studenski, S.A. (2012). Interpreting the need for initial support to perform tandem stance tests of balance. Physical Therapy, 92(10), 13161328. PubMed ID: 22745198 doi:10.2522/ptj.20110283

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holden, E.W., Tarnowski, K.J., & Prinz, R.J. (1982). Reliability of neurological soft signs in children: Reevaluation of the PANESS. Journal of Abnormal Child Psychology, 10(2), 163172. PubMed ID: 7108060 doi:10.1007/BF00915938

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B. (1987). Clinical measurement of postural control in adults. Physical Therapy, 67(12), 18811885. PubMed ID: 3685116 doi:10.1093/ptj/67.12.1881

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(Suppl. 2), ii7ii11. doi:10.1093/ageing/afl077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Mancini, M., Carlson-Kuhta, P., Nutt, J.G., & Salarian, A. (2016). Balance and gait represent independent domains of mobility in Parkinson disease. Physical Therapy, 96(9), 13641371. PubMed ID: 27034314 doi:10.2522/ptj.20150580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Shupert, C.L., & Mirka, A. (1989). Components of postural dyscontrol in the elderly: A review. Neurobiology of Aging, 10(6), 727738. PubMed ID: 2697808 doi:10.1016/0197-4580(89)90010-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Wrisley, D.M., & Frank, J. (2009). The balance evaluation systems test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484498. PubMed ID: 19329772 doi:10.2522/ptj.20080071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, D.R., Lynall, R.C., Buckley, T.A., & Herman, D.C. (2018). Neuromuscular control deficits and the risk of subsequent injury after a concussion: A scoping review. Sports Medicine, 48(5), 10971115. doi:10.1007/s40279-018-0871-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, D.R., Osternig, L.R., & Chou, L.S. (2015). Adolescents demonstrate greater gait balance control deficits after concussion than young adults. The American Journal of Sports Medicine, 43(3), 625632. PubMed ID: 25540297 doi:10.1177/0363546514560994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, T.N., Ferrara, M.S., Bornstein, R.A., & Baumgartner, T.A. (2009). The reliability of the modified Balance Error Scoring System. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 19(6), 471475. doi:10.1097/JSM.0b013e3181c12c7b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y., & Gurfinkel, V.S. (2018). Human postural control. Frontiers in Neuroscience, 12, 171. doi:10.3389/fnins.2018.00171

  • Jansiewicz, E.M., Goldberg, M.C., Newschaffer, C.J., Denckla, M.B., Landa, R., & Mostofsky, S.H. (2006). Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of Autism and Developmental Disorders, 36(5), 613621. PubMed ID: 16609826 doi:10.1007/s10803-006-0109-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jírovec, J., Musálek, M., & Mess, F. (2019). Test of motor proficiency second edition (BOT-2): Compatibility of the complete and short form and its usefulness for middle-age school children. Frontiers in Pediatrics, 7, 153. PubMed ID: 31065548 doi:10.3389/fped.2019.00153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerrigan, D.C., Riley, P.O., Rogan, S., & Burke, D.T. (2000). Compensatory advantages of toe walking. Archives of Physical Medicine and Rehabilitation, 81(1), 3844. PubMed ID: 10638874 doi:10.1016/S0003-9993(00)90219-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klatt, B.N., Carender, W.J., Lin, C.C., Alsubaie, S.F., Kinnaird, C.R., Sienko, K.H., & Whitney, S.L. (2015). A conceptual framework for the progression of balance exercises in persons with balance and vestibular disorders. Physical Medicine and Rehabilitation International, 2(4), 1044.

    • Search Google Scholar
    • Export Citation
  • Kokštejn, J., Musálek, M., & Tufano, J.J. (2018). Construct validity of the movement assessment battery for children-second edition test in preschool children with respect to age and gender. Frontiers in Pediatrics, 6, 12. PubMed ID: 29441343 doi:10.3389/fped.2018.00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasovsky, T., & Levin, M.F. (2010). Review: Toward a better understanding of coordination in healthy and poststroke gait. Neurorehabilitation and Neural Repair, 24(3), 213224. PubMed ID: 19822722 doi:10.1177/1545968309348509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maskey, R., Fei, J., & Nguyen, H.-O. (2018). Use of exploratory factor analysis in maritime research. The Asian Journal of Shipping and Logistics, 34(2), 91111. doi:10.1016/j.ajsl.2018.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muehlbauer, T., Roth, R., Bopp, M., & Granacher, U. (2012). An exercise sequence for progression in balance training. Journal of Strength and Conditioning Research, 26(2), 568574. PubMed ID: 22067238 doi:10.1519/JSC.0b013e318225f3c4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, H.-S., Kim, J.-H., & Lim, Y.-J. (2017). The effect of the base of support on anticipatory postural adjustment and postural stability. The Journal of Korean Physical Therapy, 29(3), 135141. doi:10.18857/jkpt.2017.29.3.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nashner, L.M., Shupert, C.L., Horak, F.B., & Black, F.O. (1989). Organization of posture controls: An analysis of sensory and mechanical constraints. Progress in Brain Research, 80, 411418. PubMed ID: 2699375 doi:10.1016/s0079-6123(08)62237-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neptune, R.R., Burnfield, J.M., & Mulroy, S.J. (2007). The neuromuscular demands of toe walking: A forward dynamics simulation analysis. Journal of Biomechanics, 40(6), 12931300. PubMed ID: 16842801 doi:10.1016/j.jbiomech.2006.05.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notermans, N.C., Dijk, G.W., Graaf, Y. van der, Gijn, J. van, & Wokke, J.H. (1994). Measuring ataxia: Quantification based on the standard neurological examination. Journal of Neurology,Neurosurgery & Psychiatry, 57(1), 2226. doi:10.1136/jnnp.57.1.22

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patankar, V.C., Sangle, J.P., Shah, H.R., Dave, M., & Kamath, R.M. (2012). Neurological soft signs in children with attention deficit hyperactivity disorder. Indian Journal of Psychiatry, 54(2), 159165. PubMed ID: 22988324 doi:10.4103/0019-5545.99540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pau, M., Porta, M., Arippa, F., Pilloni, G., Sorrentino, M., Carta, M., … Leban, B. (2019). Dynamic postural stability, is associated with competitive level, in youth league soccer players. Physical Therapy in Sport, 35, 3641. PubMed ID: 30419410 doi:10.1016/j.ptsp.2018.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Psotta, R., & Abdollahipour, R. (2017). Factorial validity of the movement assessment battery for children-2nd edition (MABC-2) in 7-16-year-olds. Perceptual and Motor Skills, 124(6), 10511068. PubMed ID: 28899211 doi:10.1177/0031512517729951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • , C. dos S.C. de, Boffino, C.C., Ramos, R.T., & Tanaka, C. (2018). Development of postural control and maturation of sensory systems in children of different ages a cross-sectional study. Brazilian Journal of Physical Therapy, 22(1), 7076. PubMed ID: 29239806 doi:10.1016/j.bjpt.2017.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneiders, A.G., Sullivan, S.J., Kvarnström, J., Olsson, M., Ydén, T., & Marshall, S. (2010). The effect of footwear and sports-surface on dynamic neurological screening for sport-related concussion. Journal of Science and Medicine in Sport, 13(4), 382386. PubMed ID: 20227916 doi:10.1016/j.jsams.2010.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sibley, K.M., Beauchamp, M.K., Van Ooteghem, K., Paterson, M., & Wittmeier, K.D. (2017). Components of standing postural control evaluated in pediatric balance measures: A scoping review. Archives of Physical Medicine and Rehabilitation, 98(10), 20662078.e4. doi:10.1016/j.apmr.2017.02.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sibley, K.M., Beauchamp, M.K., Van Ooteghem, K., Straus, S.E., & Jaglal, S.B. (2015). Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: A scoping review. Archives of Physical Medicine and Rehabilitation, 96(1), 122132.e29. doi:10.1016/j.apmr.2014.06.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, J.A., Denckla, M.B., McCambridge, T., Slomine, B.S., Mahone, E.M., & Suskauer, S.J. (2018). Preliminary use of the PANESS for detecting subtle motor signs in adolescents with sport-related concussion: A brief report. American Journal of Physical Medicine & Rehabilitation, 97(6), 456460. PubMed ID: 29762156 doi:10.1097/PHM.0000000000000906

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabachnick, B, & Fidell, L. 2012. Using multivariate statistics (6th ed.). Oakland, CA: Pearson College Division, 11018.

  • Verbecque, E., Lobo Da Costa, P.H., Vereeck, L., & Hallemans, A. (2015). Psychometric properties of functional balance tests in children: A literature review. Developmental Medicine and Child Neurology, 57(6), 521529. PubMed ID: 25495539 doi:10.1111/dmcn.12657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitiello, B., Ricciuti, A.J., Stoff, D.M., Behar, D., & Denckla, M.B. (1989). Reliability of subtle (soft) neurological signs in children. Journal of the American Academy of Child and Adolescent Psychiatry, 28(5), 749753. PubMed ID: 2793803 doi:10.1097/00004583-198909000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, B., Clarke, C., Swallow, V., & Forster, S. (2005). Exploratory factor analysis of the Research and Development Culture Index among qualified nurses. Journal of Clinical Nursing, 14(9), 10421047. PubMed ID: 16164521 doi:10.1111/j.1365-2702.2005.01214.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8(3), 1–13. doi:10.33151/ajp.8.3.93

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollacott, M.H., & Shumway-Cook, A. (1990). Changes in posture control across the life span—A systems approach. Physical Therapy, 70(12), 799807. PubMed ID: 2236223 doi:10.1093/ptj/70.12.799

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollacott, M.H., & Shumway-Cook, A. (2005). Postural dysfunction during standing and walking in children with cerebral palsy: What are the underlying problems and what new therapies might improve balance? Neural Plasticity, 12(2–3), 211219. PubMed ID: 16097489 doi:10.1155/NP.2005.211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yong, A.G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 7994. doi:10.20982/tqmp.09.2.p079

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 2 2
Full Text Views 14 14 14
PDF Downloads 18 18 18