Predicting Motor Skill Learning in Older Adults Using Visuospatial Performance

in Journal of Motor Learning and Development
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $41.00

1 year subscription

USD  $55.00

Student 2 year subscription

USD  $79.00

2 year subscription

USD  $103.00

Between-group comparisons of older and younger adults suggest that motor learning decreases with advancing age. However, such comparisons do not necessarily account for group differences in cognitive function, despite the co-occurrence of aging and cognitive decline. As such, cognitive differences may explain the observed age effects on motor learning. Recent work has shown that the extent to which a motor task is learned is related to visuospatial function in adults over age 65. The current study tested whether this relationship is replicable across a wider age range and with a brief, widely available cognitive test. Thirty-three adults (aged 39–89 years old) completed the Montreal Cognitive Assessment (MoCA) prior to practicing a functional upper extremity motor task; performance on the motor task was assessed 24 hours later to quantify learning. Backward elimination stepwise linear regression identified which cognitive domains significantly predicted retention. Consistent with previous findings, only the Visuospatial/Executive subtest score predicted change in performance 24 hours later, even when accounting for participant age. Thus, the age-related declines in motor learning that have been reported previously may be explained in part by deficits in visuospatial function that can occur with advancing age.

Wang and Schaefer are with the School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ. Infurna is with the Department of Psychology, Arizona State University, Tempe, AZ.

Schaefer (sydney.schaefer@asu.edu) is corresponding author.
  • Andrews, A., Thomas, M., & Bohannon, R. (1996). Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Physical Therapy, 76(3), 248–259. PubMed ID: 8602410 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguera, J.A., Reuter-Lorenz, P.A., Willingham, D.T., & Seidler, R.D. (2009). Contributions of spatial working memory to visuomotor learning. Journal of Cognitive Neuroscience, 22(9), 1917–1930. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birren, J.E., & Fisher, L.M. (1991). Aging and slowing of behavior: Consequences for cognition and survival. Nebraska Symposium on Motivation, 39, 1–37. PubMed ID: 1843133

    • Search Google Scholar
    • Export Citation
  • Birren, J.E., & Fisher, L.M. (1995). Aging and speed of behavior: Possible consequences for psychological functioning. Annual Review of Psychology, 46, 329–353. PubMed ID: 7872732 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, O., & Girgenrath, M. (2006). Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Experimental Brain Research, 169(3), 400–406. PubMed ID: 16328306 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenkel, M., Shulman, K., Hazan, E., Herrmann, N., & Owen, A.M. (2017). Assessing capacity in the elderly: Comparing the MoCA with a novel computerized battery of executive function. Dementia and Geriatric Cognitive Disorders Extra, 7(2), 249–256. PubMed ID: 28868068 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R.M., Robertson, E.M., & Press, D.Z. (2009). Sequence skill acquisition and off-line learning in normal aging. PLoS One, 4(8), e6683. PubMed ID: 19690610 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. doi:

  • Ehsani, F., Abdollahi, I., Mohseni Bandpei, M.A., Zahiri, N., & Jaberzadeh, S. (2015). Motor learning and movement performance: Older versus younger adults. Basic and Clinical Neuroscience, 6(4), 231–238. PubMed ID: 26649161

    • Search Google Scholar
    • Export Citation
  • Fernandez-Ruiz, J., Wong, W., Armstrong, I.T., & Flanagan, J.R. (2011). Relation between reaction time and reach errors during visuomotor adaptation. Behavioural Brain Research, 219(1), 8–14. PubMed ID: 21138745 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M., & Posner, M.I. (1967). Human performance. Oxford, England: Brooks/Cole.

  • Fleishman, E.A., & Rich, S. (1963). Role of kinesthetic and spatial-visual abilities in perceptual-motor learning. Journal of Experimental Psychology, 66(1), 6–11. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, C.N., Natelson Love, M.C., & Triebel, K. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29(4), 737–752. PubMed ID: 24094294 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, D.L., & Haaland, K.Y. (1992). Skill learning in the elderly: Diminished implicit and explicit memory for a motor sequence. Psychology and Aging, 7(3), 425–434. US: American Psychological Association. PubMed ID: 1388864 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedden, T., & Gabrieli, J.D. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 87–96. PubMed ID: 14735112 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenfeld, C., Nellessen, N., Dogan, I., Kuhn, H., Muller, C., Papa, F., . . . Reetz, K. (2017). Cognitive improvement and brain changes after real-time functional MRI neurofeedback training in healthy elderly and prodromal Alzheimer’s Disease. Frontiers in Neurology, 8, 384. PubMed ID: 28848488 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeunet, C., Jahanpour, E., & Lotte, F. (2016). Why standard Brain-Computer Interface (BCI) training protocols should be changed: An experimental study. Journal of Neural Engineering, 13(3), 36024. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M., & Lotte, F. (2015). Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PLoS One, 10(12), e0143962. PubMed ID: 26625261 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaliyaperumal, D., Elango, Y., Alagesan, M., & Santhanakrishanan, I. (2017). Effects of Sleep Deprivation on the Cognitive Performance of Nurses Working in Shift. Journal of Clinical and Diagnostic Research, 11(8), CC01–CC03. PubMed ID: 29911075 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantak, S.S., & Winstein, C.J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. PubMed ID: 22142953 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, S., Downs, T.D., Cash, H.R., & Grotz, R.C. (1970). Progress in development of the index of ADL. The Gerontologist, 10(1), 20–30. PubMed ID: 5420677 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenny, R.A., Coen, R.F., Frewen, J., Donoghue, O.A., Cronin, H., & Savva, G.M. (2013). Normative values of cognitive and physical function in older adults: Findings from the Irish Longitudinal Study on Ageing. Journal of the American Geriatrics Society, 61(Suppl. 2), S279–S290. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krampe, R.T. (2002). Aging, expertise and fine motor movement. Neuroscience and Biobehavioral Reviews, 26(7), 769–776. PubMed ID: 12470688 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, K., Rossetti, H., Hynan, L.S., Carter, K., Falkowski, J., Lacritz, L., . . . Weiner, M. (2017). Changes in montreal cognitive assessment scores over time. Assessment, 24(6), 772–777. PubMed ID: 27318033 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lingo VanGilder, J., Hengge, C.R., Duff, K., & Schaefer, S.Y. (2018). Visuospatial function predicts one-week motor skill retention in cognitively intact older adults. Neuroscience Letters, 664, 139–143. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malek-Ahmadi, M., O’Connor, K., Schofield, S., Coon, D.W., & Zamrini, E. (2018). Trajectory and variability characterization of the Montreal cognitive assessment in older adults. Aging Clinical and Experimental Research, 30(8), 993–998. PubMed ID: 29188578 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNay, E.C., & Willingham, D.B. (1998). Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learning & Memory, 4(5), 411–420. PubMed ID: 10701880 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moafmashhadi, P., & Koski, L. (2013). Limitations for interpreting failure on individual subtests of the montreal cognitive assessment. Journal of Geriatric Psychiatry and Neurology, 26(1), 19–28. PubMed ID: 23385364 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myerson, J., Hale, S., Wagstaff, D., Poon, L.W., & Smith, G.A. (1990). The information-loss model: A mathematical theory of age-related cognitive slowing. Psychological Review, 97(4), 475–487. PubMed ID: 2247538 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Colllin, I., . . . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. PubMed ID: 15817019 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuzzo, R. (2018). Percent differences: Another look. PM & R : The Journal of Injury, Function, and Rehabilitation, 10(6), 661–664. PubMed ID: 30273674 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldrati, V., Colombo, B., & Antonietti, A. (2018). Combination of a short cognitive training and tDCS to enhance visuospatial skills: A comparison between online and offline neuromodulation. Brain Research, 1678, 32–39. PubMed ID: 29017911 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oren, N., Yogev-Seligmann, G., Ash, E., Hendler, T., Giladi, N., & Lerner, Y. (2015). The Montreal Cognitive Assessment in cognitively-intact elderly: A case for age-adjusted cutoffs. Journal of Alzheimer’s Disease, 43(1), 19–22. PubMed ID: 30296731 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., & Schweighofer, N. (2017). Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. Journal of NeuroEngineering and Rehabilitation, 14(1), 21. PubMed ID: 28302158 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, J., Chasteen, A.L., & Abrams, R.A. (1994). Rapid aimed limb movements: Age differences and practice effects in component submovements. Psychology and Aging, 9(2), 325–334. PubMed ID: 8054180 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randolph, C. (1998). Repeatable battery for the assessment of neuropsychological status. San Antonio, TX: The Psychological Corporation.

    • Search Google Scholar
    • Export Citation
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/.

    • Search Google Scholar
    • Export Citation
  • Rossetti, H.C., Lacritz, L.H., Cullum, C.M., & Weiner, M.F. (2011). Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology, 77(13), 1272–1275. PubMed ID: 21917776 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y. (2015). Preserved motor asymmetry in late adulthood: Is measuring chronological age enough? Neuroscience, 294, 51–59. PubMed ID: 25772792 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., Dibble, L.E., & Duff, K. (2015). Efficacy and feasibility of functional upper extremity task-specific training for older adults with and without cognitive impairment. Neurorehabilitation and Neural Repair, 29(7), 636–644. PubMed ID: 25416739 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., & Duff, K. (2015). Rapid responsiveness to practice predicts longer-term retention of upper extremity motor skill in non-demented older adults. Frontiers in Aging Neuroscience, 7, 214. PubMed ID: 26635601 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., & Duff, K. (2017). Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 39(5), 473–484. PubMed ID: 27690745 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., & Lee, T.D. (2005). Motor control and learning : A behavioral emphasis (4th ed.). T.D. Lee, (Ed.) Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Schweighofer, N., Lee, J.-Y., Goh, H.-T., Choi, Y., Kim, S.S., Stewart, J.C., . . . Winstein, C.J. (2011). Mechanisms of the contextual interference effect in individuals poststroke. Journal of Neurophysiology, 106(5), 2632–2641. PubMed ID: 21832031 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweizer, T.A., Al-Khindi, T., & Macdonald, R.L. (2012). Mini-mental state examination versus montreal cognitive assessment: Rapid assessment tools for cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Journal of the Neurological Sciences, 316(1–2), 137–140. PubMed ID: 22385680 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidler, R.D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70(4), 337–346. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Techentin, C., Voyer, D., & Voyer, S.D. (2014). Spatial abilities and aging: A meta-analysis. Experimental Aging Research, 40(4), 395–425. PubMed ID: 25054640 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toglia, J., Fitzgerald, K.A., O’Dell, M.W., Mastrogiovanni, A.R., & Lin, C.D. (2011). The mini-mental state examination and montreal cognitive assessment in persons with mild subacute stroke: Relationship to functional outcome. Archives of Physical Medicine and Rehabilitation, 92(5), 792–798. PubMed ID: 21530727 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsoi, K.K., Chan, J.Y., Hirai, H.W., Wong, S.Y., & Kwok, T.C. (2015). Cognitive tests to detect dementia: A systematic review and meta-analysis. JAMA Internal Medicine, 175(9), 1450–1458. PubMed ID: 26052687 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, R.J., Hondori, H.M., Khademi, M., Cassidy, J.M., Wu, K.M., Yang, D.Z., . . . Cramer, S.C. (2018). Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Frontiers in Neurology, 9, 597. PubMed ID: 30087653 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 16
Full Text Views 9 9 3
PDF Downloads 1 1 1