Motor Development Research: II. The First Two Decades of the 21st Century Shaping Our Future

in Journal of Motor Learning and Development
View More View Less
  • 1 University of Maryland, Baltimore
  • 2 University of Strathclyde
  • 3 Ghent University
  • 4 University of Delaware
  • 5 Auburn University
  • 6 University of Michigan
  • 7 University of Stuttgart
  • 8 University of Maryland, College Park
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $42.00

1 year online subscription

USD  $56.00

Student 2 year online subscription

USD  $80.00

2 year online subscription

USD  $107.00

In Part I of this series I, we looked back at the 20th century and re-examined the history of Motor Development research described in Clark & Whitall’s 1989 paper “What is Motor Development? The Lessons of History”. We now move to the 21st century, where the trajectories of developmental research have evolved in focus, branched in scope, and diverged into three new areas. These have progressed to be independent research areas, co-existing in time. We posit that the research focus on Dynamical Systems at the end of the 20th century has evolved into a Developmental Systems approach in the 21st century. Additionally, the focus on brain imaging and the neural basis of movement have resulted in a new approach, which we entitled Developmental Motor Neuroscience. Finally, as the world-wide obesity epidemic identified in the 1990s threatened to become a public health crisis, researchers in the field responded by examining the role of motor development in physical activity and health-related outcomes; we refer to this research area as the Developmental Health approach. The glue that holds these research areas together is their focus on movement behavior as it changes across the lifespan.

Whitall is with the Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA. Bardid is with the School of Education, University of Strathclyde, Glasgow, United Kingdom; and the Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium. Getchell is with the Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA. Pangelinan is with the School of Kinesiology, College of Education, Auburn University, Auburn, AL, USA. Robinson is with the School of Kinesiology; and the Center for Human Growth and Development; University of Michigan, Ann Arbor, MI, USA. Schott is with the Institute of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany. Clark is with the Department of Kinesiology, School of Public Health; and the Neuroscience and Cognitive Science Program; University of Maryland, College Park, MD, USA.

Clark (jeclark@umd.edu) is corresponding author.
  • Adams, I.L., Lust, J.M., Wilson, P.H., & Steenbergen, B. (2014). Compromised motor control in children with DCD: A deficit in the internal model?—A systematic review. Neuroscience & Biobehavioral Reviews, 47, 225244. PubMed ID: 25193246 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adolph, K.E., & Hoch, J.E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70(1), 141164. PubMed ID: 30256718 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sanchez-Lopez, M., Martínez-Hortelano, J.A., & Martinez-Vizcaino, V. (2017). The effect of physical activity interventions on children’s cognition and metacognition: A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(9), 729738. PubMed ID: 28838577. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D.I., Campos, J.J., Witherington, D.C., Dahl, A., Rivera, M., He, M., . . . Barbu-Roth, M. (2013). The role of locomotion in psychological development. Frontiers in Psychology, 4, 440. PubMed ID: 23888146 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bair, W.-N., Kiemel, T., Jeka, J.J., & Clark, J.E. (2007). Development of multisensory reweighting for posture control in children. Experimental Brain Research, 183(4), 435446. PubMed ID: 17665179 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., Lai, S.K., Veldman, S.L.C., Hardy, L.L., Cliff, D.P., Morgan, P.J., . . . Okely, A.D. (2016). Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Medicine, 46(11), 16631688. PubMed ID: 26894274 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L.M., Van Beurden, E., Morgan, P.J., Brooks, L.O., & Beard, J.R. (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. Journal of Adolescent Health, 44(3), 252259. PubMed ID: 19237111 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, S., Weisbrod, M., Bornfleth, H., Resch, F., & Oelkers-Ax, R. (2005). How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation. Neuroimage, 27(4), 737752. PubMed ID: 16027009 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, M.S., Spencer, J.P., & Shenk, D. (2017). Introduction to the collection ‘How we develop – Developmental systems and emergence of complex behaviors. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1413. PubMed ID: 27620007 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bo, J., Contreras-Vidal, J.L., Kagerer, F.A., & Clark, J.E. (2006). Effects of increased complexity of visuomotor transformations on children’s arm movements. Human Movement Science, 25(4–5), 553567. PubMed ID: 17011657 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, M.H., Hahn, C.S., & Suwalsky, J.T. (2013). Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychological Science, 24(10), 19061917. PubMed ID: 23964000 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brian, A., Bardid, F., Barnett, L.M., Deconinck, F.J., Lenoir, M., & Goodway, J.D. (2018). Actual and perceived motor competence levels of Belgian and United States preschool children. Journal of Motor Learning and Development, 6(S2), S320S336. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caçola, P., Getchell, N., Srinivasan, D., Alexandrakis, G., & Liu, H. (2018). Cortical activity in fine-motor tasks in children with developmental coordination disorder: A preliminary fNIRS study. International Journal of Developmental Neuroscience, 65(1), 8390. PubMed ID: 29126862 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairney, J., Dudley, D., Kwan, M., Bulten, R., & Kriellaars, D. (2019). Physical literacy, physical activity and health: Toward an evidence-informed conceptual model. Sports Medicine, 49(3), 371383. PubMed ID: 30747375 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, J.J., Anderson, D.I., Barbu-Roth, M.A., Hubbard, E.M., Hertenstein, M.J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149219. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattuzzo, M.T., dos Santos Henrique, R., , A.H.N., de Oliveira, I.S., Melo, B.M., de Sousa Moura, M., . . . Stodden, D. (2016). Motor competence and health related physical fitness in youth: A systematic review. Journal of Science and Medicine in Sport, 19(2), 123129. PubMed ID: 25554655 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2019). Prevalence of childhood obesity in the United States. Retrieved from: https://www.cdc.gov/obesity/data/childhood.html

    • Export Citation
  • Chen, L.-C., Jeka, J.J., & Clark, J.E. (2016). Development of adaptive sensorimotor control in infant sitting posture. Gait & Posture, 45, 157163. PubMed ID: 26979899 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiarenza, G.A., Papakostopoulos, D., Giordana, P., & Guareschi-Cazzullo, A. (1983). Movement-related brain macropotentials during skill performances. A developmental study. Electroencephalography and Clinical Neurophysiology, 56(4), 373383. PubMed ID: 6193951 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiarenza, G.A., Villa, M., & Vasile, G. (1995). Developmental aspects of bereitschaftspotential in children during goal-directed behavior. International Journal of Psychophysiology, 19(2), 149176. PubMed ID: 7622410 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chivers, P., Larkin, D., Rose, E., Beilin, L., & Hands, B. (2013). Human movement science low motor performance scores among overweight children : Poor coordination or morphological constraints ? Human Movement Science, 32(5), 11271137. PubMed ID: 24060227 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciechanski, P., & Kirton, A. (2017). Transcranial direct-current stimulation can enhance motor learning in children. Cerebral Cortex, 27(5), 27582767. PubMed ID: 27166171 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J.E., & Whitall, J. (1989). What is motor development? The lessons of history. Quest, 41(3), 183202. doi:

  • Contreras-Vidal, J.L., Bo, J., Boudreau, J.P., & Clark, J.E. (2005). Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 162(2), 155164. PubMed ID: 15586275 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppens, E., Bardid, F., Deconinck, F.J., Haerens, L., Stodden, D.F., D’Hondt, E., . . . Lenoir, M.E. (2019). Developmental change in motor competence: A latent growth curve analysis. Frontiers in Physiology, 10, 1273. PubMed ID: 31632300 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbetta, D., DiMercurio, A., Wiener, R.F., Connell, C.P., & Clark, M. (2018). How perception and action fosters exploration and selection in infant skill acquisition. In J. Plumert (Ed.), Advances in child development and behavior: Studying the perception-action system as a model system for understanding development (Vol. 55, pp. 130). Cambridge, MA: Elsevier.

    • Search Google Scholar
    • Export Citation
  • Corbetta, D., Friedman, D.R., & Bell, M.A. (2014). Brain reorganization as a function of walking experience in 12-month-old infants: Implications for the development of manual laterality. Frontiers in Psychology, 5(245), 245. PubMed ID: 24711801 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Guio, F., Jacobson, S.W., Molteno, C.D., Jacobson, J.L., & Meintjes, E.M. (2012). Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults. Pediatric Neurology, 46(2), 94100. PubMed ID: 22264703 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Hondt, E., Deforche, B., Gentier, I., De Bourdeaudhuij, I., Vaeyens, R., Philippaerts, R., . . . Lenoir, M. (2013). A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. International Journal of Obesity, 37(1), 6167. PubMed ID: 22508339 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Hondt, E., Deforche, B., Gentier, I., Verstuyf, J., Vaeyens, R., De Bourdeaudhuij, I., . . . Lenoir, M. (2014). A longitudinal study of gross motor coordination and weight status in children. Obesity, 22(6), 15051511. PubMed ID: 24549983 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Hondt, V., Deforche, B., Vaeyens, R., Vandorpe, B., Vandendriessche, J., Pion, J., . . . Lenoir, M. (2011). Gross motor coordination in relation to weight status and age in 5-to 12-year-old boys and girls: A cross-sectional study. International Journal of Pediatric Obesity, 6(Suppl. 3), e556e564. PubMed ID: 20973659 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos Santos, M.A.M., Nevill, A.M., Buranarugsa, R., Pereira, S., Gomes, T.N.Q.F., Reyes, A., . . . Maia, J.A.R. (2018). Modeling children’s development in gross motor coordination reveals key modifiable determinants. An allometric approach. Scandinavian Journal of Medicine & Science in Sports, 28(5), 15941603. PubMed ID: 29363177 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305307. PubMed ID: 7569982 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, A.C., & Brain Development Cooperative Group. (2006). The NIH MRI study of normal brain development. Neuroimage, 30(1), 184202. PubMed ID: 16376577 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldner, H.A., Logan, S.W., & Galloway, J.C. (2016). Why the time is right for a radical paradigm shift in early powered mobility: The role of powered mobility technology devices, policy and stakeholders. Disability and Rehabilitation: Assistive Technology, 11(2), 89102. PubMed ID: 26340446 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrel-Chapus, C., Hay, L., Olivier, I., Bard, C., & Fleury, M. (2002). Visuomanual coordination in childhood: Adaptation to visual distortion. Experimental Brain Research, 144(4), 506517. PubMed ID: 12037635 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fietzek, U.M., Heinen, F., Berweck, S., Maute, S., Hufschmidt, A., Schulte-Mönting, J., . . . Korinthenberg, R. (2000). Development of the corticospinal system and hand motor function: Central conduction times and motor performance tests. Developmental Medicine & Child Neurology, 42(4), 220227. PubMed ID: 10795559 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., . . . Ring, S. (2013). Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers cohort. International Journal of Epidemiology, 42(1), 97110. PubMed ID: 22507742 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervain, J., Mehler, J., Werker, J.F., Nelson, C.A., Csibra, G., Lloyd-Fox, S., . . . Aslin, R.N. (2011). Near-infrared spectroscopy: A report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1(1), 2246. PubMed ID: 22436417 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getchell, N., & Liang, L.Y. (2018). Functional neuroimaging of prefrontal cortex activity during a problem solving versus motor task in children with and without autism. In H. Ayaz & F. Dehais (Eds.), Neuroergonomics: The brain at work in everyday life (pp. 291292). Cambridge, MA: Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getchell, N., & Whitall, J. (2003). How do children coordinate simultaneous upper and lower extremity tasks? The development of dual motor task coordination. Journal of Experimental Child Psychology, 85(2), 120140. PubMed ID: 12799165 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein M. (1994). Decade of the brain. An agenda for the nineties. The Western Journal of Medicine, 161(3), 239241. PubMed ID: 7975560

    • Search Google Scholar
    • Export Citation
  • Golenia, L., Schoemaker, M.M., Otten, E., Mouton, L.J., & Bongers, R.M. (2018). Development of reaching during mid-childhood from a developmental systems perspective. PLoS One, 13(2), e0193463. PubMed ID: 29474421 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, S.L., Reeb-Sutherland, B.C., & Nelson, E.L. (2016). Quantifying motor experience in the infant brain: EEG power, coherence, and mu desynchronization. Frontiers in Psychology, 7, 216. PubMed ID: 26925022 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodway, J.D., & Rudisill, M.E. (1996). Influence of a motor skill intervention program on perceived competence of at-risk African American preschoolers. Adapted Physical Activity Quarterly, 13(3), 288301. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodway, J.D., & Rudisill, M.E. (1997). Perceived physical competence and actual motor skill competence of African American preschool children. Adapted Physical Activity Quarterly, 14(4), 314326. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodway, J.D., Wall, S., & Getchell, N. (2009). Theory into practice: Promoting an “active start” for young children: Developing competent and confident early movers. Strategies, 23(2), 3032. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goran, M.I., Reynolds, K.D., & Lindquist, C.H. (1999). Role of physical activity in the prevention of obesity in children. International Journal of Obesity, 23(Suppl. 3), S18S33. PubMed ID: 10367999 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10(1), 111. PubMed ID: 17181692 doi:

  • Graf, C., Koch, B., Kretschmann-Kandel, E., Falkowski, G., Christ, H., Coburger, S., . . . Predel, H.G. (2004). Correlation between BMI, leisure habits and motor abilities in childhood (CHILT-Project). International Journal of Obesity, 28(1), 2226. PubMed ID: 14652619 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, P.E., & Gray, R.D. (2005). Discussion: Three ways to misunderstand developmental systems theory. Biology and Philosophy, 20(2–3), 417425. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harter, S. (1978). Effectance motivation reconsidered. Toward a developmental model. Human Development, 21(1), 3464. doi:

  • Harter, S. (1999). The construction of the self: A developmental perspective. New York, NY: Guilford.

  • Harter, S., & Cornell, J., (1984). A model of the relationship among children’s academic achievement and their self-perceptions of competence, control, and motivational orientation. In J.G. Nicholls, (Ed.), The development of achievement motivation (Vol. 3, pp. 219140). Greenwich CT: Jai Press.

    • Search Google Scholar
    • Export Citation
  • Hendrix, C.G., Prins, M.R., & Dekkers, H. (2014) Developmental coordination disorder and overweight and obesity in children: A systematic review. Obesity Reviews, 15(5), 408423. PubMed ID: 24387283 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henrique, R.S., Bustamante, A.V., Freitas, D.L., Tani, G., Katzmarzyk, P.T., & Maia, J.A. (2018). Tracking of gross motor coordination in Portuguese children. Journal of Sports Sciences, 36(2), 220228. PubMed ID: 28282742 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holst-Wolf, J.M., Yeh, I., & Konczak, J. (2016). Development of proprioceptive acuity in typically developing children: Normative data on forearm position sense. Frontiers in Human Neuroscience, 10, 436. PubMed ID: 27621702 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Physical Literacy Association. (2017). Definition of physical literacy. Retrieved from www.physical-literacy.org.uk

    • Export Citation
  • Iverson, J.M. (2010). Developing language in a developing body: The relationship between motor development and language development. Journal of Child Language, 37(2), 229261. PubMed ID: 20096145 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaakkola, T., Huhtiniemi, M., Salin, K., Seppälä, S., Lahti, J., Hakonen, H., . . . Stodden, D.F. (2019). Motor competence, perceived physical competence, physical fitness, and physical activity within Finnish children. Scandinavian Journal of Medicine & Science in Sports, 29(7), 10131021. PubMed ID: 30825382 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, K.H., & Engelhardt, L. (2012). The effects of handwriting experience on functional brain development in pre-literate children. Trends in Neuroscience and Education, 1(1), 3242. PubMed ID: 25541600 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T.D. (2010). Developmental systems theory. In M.S. Blumberg, J.H. Freeman, & S.R. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 1229). New York, NY: Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Jordan, M.I., & Wolpert, D.M. (1999). Computational motor control. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 601620). Cambridge, MA: MIT Press.

    • Search Google Scholar
    • Export Citation
  • Kagerer, F.A., & Clark, J.E. (2014). Development of interactions between sensorimotor representations in school-aged children. Human Movement Science, 34, 164177. PubMed ID: 24636697 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kakebeeke, T.H., Lanzi, S., Zysset, A.E., Arhab, A., Messerli-Bürgy, N., Stuelb, K., . . . Munsch, S. (2017). Association between body composition and motor performance in preschool children. Obesity Facts, 10(5), 420431. PubMed ID: 28934745 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaur, M., Srinivasan, S.M., & Bhat, A.N. (2018). Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD). Research in Developmental Disabilities, 72, 7995. PubMed ID: 29121516 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keating, D.P., & Hertzman, C. (Eds.). (1999). Developmental health and the wealth of nations: Social, biological, and educational dynamics. New York, NY: Guilford Press.

    • Search Google Scholar
    • Export Citation
  • Khodaverdi, Z., Bahram, A., Stodden, D., & Kazemnejad, A. (2016). The relationship between actual motor competence and physical activity in children: Mediating roles of perceived motor competence and health-related physical fitness. Journal of Sports Sciences, 34(16), 15231529. PubMed ID: 26691581 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, B.R. Harring, J., Oliveira, M.A., & Clark, J.E. (2011). Statistically characterizing intra- and inter-individual variability in children with developmental coordination disorder. Research in Developmental Disabilities, 32(4), 13881398. PubMed ID: 21277739 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konczak, J., Jansen-Osmann, P., & Kalveram, K.T. (2003). Development of force adaptation during childhood. Journal of Motor Behavior, 35(1), 4152. PubMed ID: 12724098 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, S.K., Costigan, S.A., Morgan, P.J., Lubans, D.R., Stodden, D.F., Salmon, J., . . . Barnett, L.M. (2014). Do school-based interventions focusing on physical activity, fitness, or fundamental movement skill competency produce a sustained impact in these outcomes in children and adolescents? A systematic review of follow-up studies. Sports Medicine, 44(1), 6779. 24122775 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., Wang, Z., Yue, G.H., & Jiang, C. (2020). Determining whether tennis benefits the updating function in young children: A functional near-Infrared spectroscopy study. Applied Sciences, 10(1), 407. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGear, M., Greyling, L., Sloan, E., Bell, R.I., Williams, B.-L., Naylor, P.-J., . . . Temple, V.A. (2012). A window of opportunity? Motor skills and perceptions of competence of children in kindergarten. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 29. PubMed ID: 22420534 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L.Y., Chen, J.J.J., Shewokis, P.A., & Getchell, N. (2016). Developmental and condition-related changes in the prefrontal cortex activity during rest. Journal of Behavioral and Brain Science, 6(12), 485497. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libertus, K., & Violi, D.A. (2016). Sit to talk: Relation between motor skills and language development in infancy. Frontiers in Psychology, 7(1071), 475. PubMed ID: 27065934 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima-Alvarez, C.D., Tudella, E., van der Kamp, J., & Savelsbergh, G.J. (2014). Early development of head movements between birth and 4 months of age: A longitudinal study. Journal of Motor Behavior, 46(6), 415422. PubMed ID: 25208054 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liong, G.H.E., Ridgers, N.D., & Barnett, L.M. (2015). Associations between skill perceptions and young children’s actual fundamental movement skills. Perceptual and Motor Skills, 120(2), 591603. PubMed ID: 25706343 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lockman, J.J., Fears, N.E., & Jung, W.P. (2018). The development of object fitting: The dynamics of spatial coordination. In J. Plumert (Ed.), Advances in child development and behavior: Studying the perception-action system as a model system for understanding development (Vol. 55, pp. 3172). Cambridge, MA: Elsevier.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, S.W., Hospodar, C.M., Feldner, H.A., Huang, H.H., & Galloway, J.C. (2018). Modified ride-on car use by young children with disabilities. Pediatric Physical Therapy, 30(1), 5056. PubMed ID: 29252838 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, S.W., Robinson, L.E., Wilson, A.E., & Lucas, W.A. (2012). Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. Child: Care, Health and Development, 38(3), 305315. PubMed ID: 21880055 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopes, V.P., Stodden, D.F., Bianchi, M.M., Maia, J.A., & Rodrigues, L.P. (2012). Correlation between BMI and motor coordination in children. Journal of Science and Medicine in Sport, 15(1), 3843. PubMed ID: 21831708 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubans, D.R., Morgan, P.J., Cliff, D.P., Barnett, L.M., & Okely, A.D. (2010). Fundamental movement skills in children and adolescents. Sports Medicine, 40(12), 10191035. PubMed ID: 21058749 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marrus, N., Eggebrecht, A.T., Todorov, A., Elison, J.T., Wolff, J.J., Cole, L., . . . Pruett, J.R., Jr. (2018). Walking, gross motor development, and brain functional connectivity in infants and toddlers. Cerebral Cortex, 28(2), 750763. PubMed ID: 29186388 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzoli, E., Teo, W.P., Salmon, J., Pesce, C., He, J., Ben-Soussan, T.D., . . . Barnett, L.M. (2019). Associations of class-time sitting, stepping and sit-to-stand transitions with cognitive functions and brain activity in children. International Journal of Environmental Research and Public Health, 16(9), 1482. PubMed ID: 31027380 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClelland, M.M., & Cameron, C.E. (2019). Developing together: The role of executive function and motor skills in children’s early academic lives. Early Childhood Research Quarterly, 46, 142151. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrane, B., Belton, S., Powell, D., Woods, C.B., & Issartel, J. (2016). Physical self-confidence levels of adolescents: Scale reliability and validity. Journal of Science and Medicine in Sport, 19(7), 563– 567. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miall, R.C., & Wolpert, D.M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 12651279. PubMed ID: 12662535 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molenaar, P.C., Lerner, R.M., & Newell, K.M. (Eds.). (2013). Handbook of developmental systems theory and methodology. New York, NY: Guilford Publications.

    • Search Google Scholar
    • Export Citation
  • Morgan, P.J., Barnett, L.M., Cliff, D.P., Okely, A.D., Scott, H.A., Cohen, K.E., . . . Lubans, D.R. (2013). Fundamental movement skill interventions in youth: A systematic review and meta-analysis. Pediatrics, 132(5), e1361e1383. PubMed ID: 24167179 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morita, T., Asada, M., & Naito, E. (2016). Contribution of neuroimaging studies to understanding development of human cognitive brain functions. Frontiers in Human Neuroscience, 10, 464. PubMed ID: 27695409 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Association for Sport and Physical Education. (2002). Active Start: A statement of physical activity guidelines for children birth to five years. Reston, VA: Author.

    • Search Google Scholar
    • Export Citation
  • National Association for Sport and Physical Education. (2009). Active Start: A statement of physical activity guidelines for children birth age 5 (2nd ed.). Reston, VA: Author.

    • Search Google Scholar
    • Export Citation
  • Nishiyori, R., Bisconti, S., Meehan, S.K., & Ulrich, B.D. (2016). Developmental changes in motor cortex activity as infants develop functional motor skills. Developmental Psychobiology, 58(6), 773783. PubMed ID: 27096281 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Office of the Surgeon General (US) and National Institutes of Health (US). (2001). The Surgeon General’s call to action to prevent and decrease overweight and obesity. Rockville, MD: Office of the Surgeon General (US).

    • Search Google Scholar
    • Export Citation
  • Okely, A.D., Booth, M.L., & Chey, T. (2004). Relationships between body composition and fundamental movement skills among children and adolescents. Research Quarterly for Exercise and Sport, 75(3), 238247. PubMed ID: 15487288 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okely, A.D., Booth, M.L., & Patterson, J.W. (2001). Relationship of physical activity to fundamental movement skills among adolescents. Medicine & Science in Sports & Exercise, 33(11), 18991904. PubMed ID: 11689741 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyama, S., Griffiths, P.E., & Gray, R.D. (2001). Introduction: What is developmental systems theory. In S. Oyama, P.E. Griffiths, & R.D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 111). Cambridge, MA: MIT Press.

    • Search Google Scholar
    • Export Citation
  • Pangelinan, M.M., Kagerer, F.A., Momen, B., Hatfield, B.D., & Clark, J.E. (2011). Electrocortical dynamics reflect age-related differences in movement kinematics among children and adults. Cerebral Cortex, 21(4), 737747. PubMed ID: 20805237 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pangelinan, M.M., Zhang, G., VanMeter, J.W., Clark, J.E., Hatfield, B.D., & Haufler, A.J. (2011). Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage, 54(4), 30933100. PubMed ID: 21078402 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesce, C., Masci, I., Marchetti, R., Vazou, S., Sääkslahti, A., & Tomporowski, P.D. (2016). Deliberate play and preparation jointly benefit motor and cognitive development: Mediated and moderated effects. Frontiers in Psychology, 7, 349. PubMed ID: 27014155 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piek, J.P., Dawson, L., Smith, L.M., & Gasson, N. (2008). The role of early fine and gross motor development on later motor and cognitive ability. Human Movement Science, 27(5), 668681. PubMed ID: 18242747 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumert, J. (Ed.). (2018). Advances in child development and behavior: Studying the perception-action system as a model system for understanding development (Vol. 55). Cambridge, MA: Elsevier.

    • Search Google Scholar
    • Export Citation
  • Plumert, J.M., & Kearney, J.K. (2018). Timing is almost everything: How children perceive and act on dynamic affordances. In J. Plumert (Ed.), Advances in child development and behavior: Studying the perception-action system as a model system for understanding development (Vol. 55, pp. 173204). Cambridge, MA: Elsevier.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L.E. (2011). The relationship between perceived physical competence and fundamental motor skills in preschool children. Child: Care, Health and Development, 37(4), 589596. PubMed ID: 21143273 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L.E. (2018). Motor development, a field with a bright future. Kinesiology Review, 7(2), 115122. doi:

  • Robinson, L.E., & Palmer, K.K. (2017). Development of a digital-based instrument to assess perceived motor competence in children: Face validity, test-retest reliability, and internal consistency. Sports, 5(3), 48. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L.E., Rudisill, M.E., & Goodway, J.D. (2009). Instructional climates in preschool children who are at-risk. Part II: Perceived physical competence. Research Quarterly for Exercise and Sport, 80(3), 543551. PubMed ID: 19791640 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L.E., Stodden, D.F., Barnett, L.M., Lopes, V.P., Logan, S.W., Rodrigues, L.P., . . . D’Hondt, E. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Medicine, 45(9), 12731284. PubMed ID: 26201678 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, L.P., Stodden, D.F., & Lopes, V.P. (2016). Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school. Journal of Science and Medicine in Sport, 19(1), 8792. PubMed ID: 25660571 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudisill, M.E., Mahar, M.T., & Meaney, K.S. (1993). The relationship between children’s perceived and actual motor competence. Perceptual and Motor Skills, 76(3), 895906. PubMed ID: 8321605 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneiberg, S., Sveistrup, H., McFadyen, B., McKinley, P., & Levin, M.F. (2002). The development of coordination for reach-to-grasp movements in children. Experimental Brain Research, 146(2), 142154. PubMed ID: 12195516 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. PubMed ID: 10382616 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, N. (2012). Age-related differences in motor imagery: Working memory as a mediator. Experimental Aging Research, 38(5), 559583. PubMed ID: 23092223 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, N. (2019). Dual task performance in DCD: Understanding trade-offs and their implications for training. Current Developmental Disorders Report, 6, 87101. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, N., Alof, V., Hultsch, D., & Meermann, D. (2007). Physical fitness in children with developmental coordination disorder. Research Quarterly for Exercise and Sport, 78(5), 438450. PubMed ID: 18274216 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, N., & Holfelder, B. (2015). Relationship between motor skill competency and executive function in children with down’s syndrome. Journal of Intellectual Disability Research, 59(9), 860872. PubMed ID: 25688672 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, N., & Klotzbier, T. (2018). The motor-cognitive connection: Indicator of future developmental success in children and adolescents. In R. Meeusen, S. Schaefer, P. Tomporowski, & R. Bailey (Eds.), Physical activity and educational achievement: Insights from exercise neuroscience (pp. 111129). New York, NY: Routledge.

    • Search Google Scholar
    • Export Citation
  • Scibinetti, P., Tocci, N., & Pesce, C. (2011). Motor creativity and creative thinking in children: The diverging role of inhibition. Creativity Research Journal, 23(3), 262272. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seefeldt, V. (1980). Developmental motor patterns: Implications for elementary school physical education. In C.H. Nadeau, W.R. Halliwell, K.M. Newell, & G.C. Roberts (Eds.), Psychology of motor behavior and sport (pp. 314323). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Smith, B.A., Stergiou, N., & Ulrich, B.D. (2011). Patterns of gait variability across the lifespan in persons with and without Down syndrome. Journal of Neurologic Physical Therapy, 35(4), 170177. PubMed ID: 22052133 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Southall, J.E., Okely, A.D., & Steele, J.R. (2004). Actual and perceived physical competence in overweight and nonoverweight children. Pediatric Exercise Science, 16(1), 1524. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Southgate, V., Johnson, M.H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. PubMed ID: 19675001 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spessato, B.C., Gabbard, C., & Valentini, N.C. (2013). The role of motor competence and body mass index in children’s activity levels in physical education classes. Journal of Teaching in Physical Education, 32(2), 118130. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stodden, D.F., Goodway, J.D., Langendorfer, S.J., Roberton, M.A., Rudisill, M.E., Garcia, C., . . . Garcia, L.E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290306. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thelen, E. (2000). Motor development as foundation and future of developmental psychology. International Journal of Behavioral Development, 24(4), 385397. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomason, M.E., Hect, J., Waller, R., Manning, J.H., Stacks, A.M., Beeghly, M., . . . Romero, R. (2018). Prenatal neural origins of infant motor development: Associations between fetal brain and infant motor development. Development and Psychopathology, 30(3), 763772. PubMed ID: 30068433 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurman, S.L., & Corbetta, D. (2017). Spatial exploration and changes in infant-mother dyads around transitions in infant locomotion. Developmental Psychology, 53(7), 12071221. PubMed ID: 28459258 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toftegaard-Stoeckel, J., Groenfeldt, V., & Andersen, L.B. (2010). Children’s self-perceived bodily competencies and associations with motor skills, body mass index, teachers’ evaluations, and parents’ concerns. Journal of Sports Sciences, 28(12), 13691375. PubMed ID: 20845214 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D., & Pesce, C. (2019). Exercise, sports, and performance arts benefit cognition via a common process. Psychological Bulletin, 145(9), 929951. PubMed ID: 31192623 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., & Flegal, K.M. (1998). Overweight children and adolescents: Description, epidemiology, and demographics. Pediatrics, 101(Suppl. 2), 497504. PubMed ID: 12224656

    • Search Google Scholar
    • Export Citation
  • Turesky, T.K., Olulade, O.A., Luetje, M.M., & Eden, G.F. (2018). An fMRI study of finger tapping in children and adults. Human Brain Mapping, 39(8), 32033215. PubMed ID: 29611256 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulrich, B.D. (1987). Perceptions of physical competence, motor competence, and participation in organized sport: Their interrelationships in young children. Research Quarterly for Exercise and Sport, 58(1), 5767. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulrich, D.A.(2019). Test of gross motor development (3rd ed.). Austin, TX: Pro-Ed.

  • United Kingdom Chief Medical Officers. (2019, November). UK chief medical officers’ physical activity guidelines. Retrieved from https://www.gov.uk/government/publications/physical-activity-guidelines-uk-chief-medical-officers-report

    • PubMed
    • Export Citation
  • United States Department of Health and Human Services. (1996). Physical activity and health: A report of the surgeon general. Atlanta, GA: Centers for Disease Control and Prevention.

    • Search Google Scholar
    • Export Citation
  • Utesch, T., & Bardid, F. (2019). Motor competence. In D. Hackfort, R. Schinke, & B. Strauss (Eds.), Dictionary of sport psychology: Sport, exercise, and performing arts (p. 186). Amsterdam, Netherlands: Elsevier.

    • Search Google Scholar
    • Export Citation
  • Utesch, T., Bardid, F., Büsch, D., & Strauss, B. (2019). The relationship between motor competence and physical fitness from early childhood to early adulthood: A meta-analysis. Sports Medicine, 49(4), 541551. PubMed ID: 30747376 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderwert, R.E., & Nelson, C.A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage, 85, 264271. PubMed ID: 24128733 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Elk, M., van Schie, H.T., Hunnius, S., Vesper, C., & Bekkering, H. (2008). You’ll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy. Neuroimage, 43(4), 808814. PubMed ID: 18760368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viholainen, H., Ahonen, T., Lyytinen, P., Cantell, M., Tolvanen, A., & Lyytinen, H. (2006). Early motor development and later language and reading skills in children at risk of familial dyslexia. Developmental Medicine & Child Neurology, 48(5), 367373. PubMed ID: 16608545 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlahov, E., Baghurst, T.M., & Mwavita, M. (2014). Preschool motor development predicting high 620 school health-related physical fitness: A prospective study. Perceptual and Motor Skills, 119(1), 279291. PubMed ID: 25153755 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, N., Goodway, J., John, A., Thomas, K., Piper, K., Williams, K., . . . Gardener, D. (2020). Developing children’s motor skills in the Foundation Phase in Wales to support physical literacy. Education 3-13, 48(5), 565579. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walle, E.A., & Campos, J.J. (2014). Infant language development is related to the acquisition of walking. Developmental Psychology, 50(2), 336348. PubMed ID: 23750505 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitall, J., Schott, N., Robinson, L.E., Bardid, F., & Clark, J.E., (2020). Motor development research: I. The lessons of history revisited (the 18th to the 20th century). Journal of Motor Learning and Development. Advance online publication. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, P.H., Smits-Engelsman, B., Caeyenberghs, K., Steenbergen, B., Sugden, D., Clark, J., . . . Blank, R. (2017). Cognitive and neuroimaging findings in developmental coordination disorder: New insights from a systematic review of recent research. Developmental Medicine & Child Neurology, 59(11), 11171129. PubMed ID: 28872667 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1(6), 209216. PubMed ID: 21223909 doi:

  • Wu, J., McKay, S., & Angulo-Barroso, R. (2009). Center of mass control and multi-segment coordination in children during quiet stance. Experimental Brain Research, 196(3), 329339. PubMed ID: 19484228 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zask, A., Barnett, L.M., Rose, L., Brooks, L.O., Molyneux, M., Hughes, D., . . . Salmon, J. (2012). Three year follow-up of an early childhood intervention: Is movement skill sustained? International Journal of Behavioral Nutrition and Physical Activity, 9(1), 127. PubMed ID: 23088707 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 192 192 192
Full Text Views 3 3 3
PDF Downloads 2 2 2