Heart Rate Alters, But Does Not Improve, Calorie Predictions in Fitbit Activity Monitors

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Background: Consumer-based activity monitors use accelerometers to estimate Calories (kcals), but it is unknown if monitors measuring heart rate (HR) use HR in kcal prediction. Purpose: Determine if there is a difference in kcal estimations in Fitbits measuring HR compared to those not measuring HR. Methods: Participants (n = 23) wore five Fitbits and performed nine activities for five minutes each, split into four groupings (G1: sitting, standing, cycling 50–150W; G2: level (0%) and inclined (10%) walking at 1.1 m/s; G3: level (0%) and inclined (10%) walking at 1.4 m/s; G4: level (0%) and inclined (3%) jogging at 2.2–4.5 m/s) in the laboratory. Three Fitbits (Blaze, Charge HR, Alta HR) assessed steps, HR, and kcals, and two Fitbits (Alta, Flex2) assessed steps and kcals. Steps, HR, and kcals data from the Fitbits were compared to criterion measures and between Fitbits measuring HR and Fitbits without HR. Results: Fitbits with HR had significantly higher kcal predictions (10.5–23.8% higher, p < .05) during inclined compared to level activities in G2–G4, whereas Fitbits without HR had similar kcal estimates between level and inclined activities. Mean absolute percent errors for kcal predictions were similar for Fitbits measuring HR (33.7–38.3%) and Fitbits without HR (32.4–36.6%). Conclusion: Fitbits measuring HR appear to use HR when predicting kcals. However, kcal prediction accuracies were similarly poor compared to Fitbits without HR compared to criterion measures.

Montoye, Vusich, Mitrzyk, and Wiersma are with the Dept. of Integrative Physiology and Health Science, Alma College, Alma, MI.

Montoye (montoyeah@alma.edu) is corresponding author.
  • Adam Noah, J., Spierer, D.K., Gu, J., & Bronner, S. (2013). Comparison of steps and energy expenditure assessment in adults of Fitbit tracker and Ultra to the Actical and indirect calorimetry. Journal of Medical Engineering and Technology, 37(7), 456–462. PubMed doi:10.3109/03091902.2013.831135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., Jr., Howley, E.T., Thompson, D.L., King, G.A., Strath, S.J., McLaughlin, J.E., & Parr, B.B. (2001). Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. Journal of Applied Physiology, 91(1), 218–224. PubMed doi:10.1152/jappl.2001.91.1.218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, M.A., Burwick, H.A., Volpp, K.G., & Patel, M.S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6), 625–626. PubMed doi:10.1001/jama.2014.17841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M.D., Kuo, C.C., Pellegrini, C.A., & Hsu, M.J. (2016). Accuracy of wristband activity monitors during ambulation and activities. Medicine & Science in Sports & Exercise, 48(10), 1942–1949. PubMed doi:10.1249/MSS.0000000000000984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, E.A., Western, M.J., Nightingale, T.E., Peacock, O.J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS ONE, 12(2), 0171720. PubMed doi:10.1371/journal.pone.0171720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., & Browning, R.C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine & Science in Sports & Exercise, 45(11), 2105–2112. PubMed doi:10.1249/MSS.0b013e318299d2eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dondzila, C., & Garner, D. (2016). Comparative accuracy of fitness tracking modalities in quantifying energy expenditure. Journal of Medical Engineering and Technology, 40(6), 325–329. PubMed doi:10.1080/03091902.2016.1197978

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooley, E.E., Golaszewski, N.M., & Bartholomew, J.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. Journal of Medical Internet Research Mhealth Uhealth, 5(3), e34. doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12, 159. PubMed doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, T., Rowlands, A.V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12, 42. PubMed doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitbit. (2016). How does Fitbit estimate how many calories I’ve burned? Retrieved from http://help.fitbit.com/articles/en_US/Help_article/1381

    • Export Citation
  • Fitbit. (2017). How does my Fitbit device count steps? Retrieved from http://help.fitbit.com/articles/en_US/Help_article/1143

    • Export Citation
  • Hartman, S.J., Nelson, S.H., Cadmus-Bertram, L.A., Patterson, R.E., Parker, B.A., & Pierce, J.P. (2016). Technology- and phone-based weight loss intervention: Pilot RCT in women at elevated breast cancer risk. American Journal of Preventive Medicine, 51(5), 714–721. PubMed doi:10.1016/j.amepre.2016.06.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hexoskin. (2017). Key metrics delivered by Hexoskin. Retrieved from https://www.hexoskin.com/pages/key-metrics-delivered-by-hexoskin

    • Export Citation
  • Imboden, M.T., Nelson, M.B., Kaminsky, L.A., & Montoye, A.H. (2017). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine. Advance online publication. doi:10.1136/bjsports-2016-096990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • International Data Corporation. (2017). U.S. Wearables Market Shares, 2016: Fitbit keeps grip. Retrieved from https://www.idc.com/getdoc.jsp?containerId=US42352317

    • Export Citation
  • Keytel, L.R., Goedecke, J.H., Noakes, T.D., Hiiloskorpi, H., Laukkanen, R., van der Merwe, L., & Lambert, E.V. (2005). Prediction of energy expenditure from heart rate monitoring during submaximal exercise. Journal of Sports Science, 23(3), 289–297. doi:10.1080/02640410470001730089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, T.B.J., Li, J.Y., Chen, C.Y., Lin, Y.C., Tsai, M.W., Lin, S.P., & Yang, C.C.H. (2017). Influence of accelerometer placement and/or heart rate on energy expenditure prediction during uphill exercise. Journal of Motor Behavior, 8(29), 1–7.

    • Search Google Scholar
    • Export Citation
  • Lamkin, P. (2016). Wearable tech market to be worth $34 billion by 2020. Forbes. Retrieved from https://www.forbes.com/forbes/welcome/?toURL=https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020/&refURL=https://www.google.com/&referrer=https://www.google.com/

    • Search Google Scholar
    • Export Citation
  • Laukkanen, R.M., & Virtanen, P.K. (1998). Heart rate monitors: State of the art. Journal of Sports Science, 16 Suppl, S3–7. doi:10.1080/026404198366920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.M., Kim, Y., & Welk, G.J. (2014). Validity of consumer-based physical activity monitors. Medicine & Science in Sports & Exercise, 46(9), 1840–1848. PubMed doi:10.1249/MSS.0000000000000287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, E.J., Lewis, Z.H., Mayrsohn, B.G., & Rowland, J.L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16(8), e192. PubMed doi:10.2196/jmir.3469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Mitrzyk, J., & Molesky, M. (2017). Comparative accuracy of a wrist-worn activity tracker and a smart shirt for physical activity assessment. Measurement in Physical Education and Exercise Science, 21(4), 201–211. doi:10.1080/1091367X.2017.1331166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, M.B., Kaminsky, L.A., Dickin, D.C., & Montoye, A.H. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine & Science in Sports & Exercise, 48(8), 1619–1628. PubMed doi:10.1249/MSS.0000000000000933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, D. (1999). Exercise testing and prescription: A health-related approach. Mountain View, CA: Mayfield Publishing.

  • Sasaki, J.E., Hickey, A., Mavilia, M., Tedesco, J., John, D., Kozey Keadle, S., & Freedson, P.S. (2015). Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. Journal of Physical Activity and Health, 12(2), 149–154. PubMed doi:10.1123/jpah.2012-0495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., Mattsson, C.M., Waggott, D., Salisbury, H., Christle, J.W., Hastie, T., … Ashley, E.A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7(2), 3. doi:10.3390/jpm7020003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackpool, C.M., Porcari, J.P, Mikat, R.P., Gillet, C., & Foster, C. (2014). The accuracy of various activity trackers in estimating steps taken and energy expenditure. Journal of Fitness Research, 3(3), 32–48.

    • Search Google Scholar
    • Export Citation
  • Villars, C., Bergouignan, A., Dugas, J., Antoun, E., Schoeller, D.A., Roth, H., … Simon, C. (2012). Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. Journal of Applied Physiology, 113(11), 1763–1771. PubMed doi:10.1152/japplphysiol.01413.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, Y., Duking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in Physiology, 8, 725. PubMed doi:10.3389/fphys.2017.00725

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisloff, U., & Coombes, J.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS ONE, 11(5), e0154420. PubMed doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., Blackburn, G., Desai, M., Phelan, D., Gillinov, L., Houghtaling, P., & Gillinov, M. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104–106. PubMed doi:10.1001/jamacardio.2016.3340

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 8
Full Text Views 3 3 0
PDF Downloads 2 2 0