Measurement of Sitting Time in Older Adults With and Without Alzheimer’s Disease

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Time spent being sedentary is associated with poorer cognitive function and risk of developing Alzheimer’s disease (AD). The present study aimed to compare patterns of sitting in a free-living environment among older adults with and without early stage AD who were similar in physical limitations, body mass, and cardiorespiratory capacity. We also compared estimates of sitting patterns between two different monitors (postural and non-postural) with different body placements (thigh-worn vs. hip-worn). Comparing older adults without cognitive impairment to those with early AD, we found that although there was no difference in the total amount of daily sitting time (p = .52), the AD group tended to have longer durations of sitting than those without AD. Inclinometry data from the hip-worn ActiGraph GT3X+ consistently underestimated time spent sitting compared to the thigh worn monitor activPAL (hours per day, proportion of waking hours, number of sitting bouts greater than 30 minutes, and duration of sitting bouts). Our results have implications for prevention strategies to reduce sedentary time, which is predominantly sitting, in persons with cognitive impairment and highlight the importance of monitor selection and placement for the accurate assessment of sitting patterns in this population.

Watts is with the Dept. of Psychology, University of Kansas, Lawrence, KS. Garnier-Villarreal is with the College of Nursing, Marquette University, Milwaukee, WI. Gardiner is with the Faculty of Medicine, The University of Queensland, Brisbane, Australia.

Watts (amberwatts@ku.edu) is correpsonding author.
  • Aggarwal, N.T., Wilson, R.S., Beck, T.L., Bienias, J.L., & Bennett, D.A. (2006). Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Archives of Neurology, 63, 1763–1769. doi:10.1001/archneur.63.12.1763

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchman, A.S., & Bennett, D.A. (2011). Loss of motor function in preclinical Alzheimer’s disease. Expert Review of Neurotherapeutics, 11, 665–676. PubMed ID: 21539487 doi:10.1586/ern.11.57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, J.M., Johnson, D.K., Watts, A., Swerdlow, R.H., & Brooks, W.M. (2010). Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Archives of Neurology, 67, 428–433. doi:10.1001/archneurol.2010.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Baker, K., Jones, D., Burn, D., Granat, M.H., & Rochester, L. (2010). The pattern of habitual sedentary behavior is different in advanced Parkinson’s disease. Movement Disorders, 25, 2114–2120. PubMed ID: 20721926 doi:10.1002/mds.23146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Winkler, E.A., Eakin, E.G., Gardiner, P.A., Dunstan, D.W., Owen, N., & Healy, G.N. (2015). Sensitivity to change of objectively-derived measures of sedentary behavior. Measurement in Physical Education and Exercise Science, 19, 138–147. doi:10.1080/1091367X.2015.1050592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43, 357–364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craft, L.L., Zderic, T.W., Gapstur, S.M., VanIterson, E.H., Thomas, D.M., Siddique, J., & Hamilton, M.T. (2012). Evidence that women meeting physical activity guidelines do not sit less: An observational inclinometry study. International Journal of Behavioral Nutrition and Physical Activity, 9, 122. PubMed ID: 23034100 doi:10.1186/1479-5868-9-122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstan, D.W., Kingwell, B.A., Larsen, R., Healy, G.N., Cerin, E., Hamilton, M.T., … Salmon, J. (2012). Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care, 35, 976–983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvivier, B.M., Schaper, N.C., Bremers, M.A., van Crombrugge, G., Menheere, P.P., Kars, M., & Savelberg, H.H. (2013). Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS ONE, 8, 55542. PubMed ID: 23418444 doi:10.1371/journal.pone.0055542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, P.A., Eakin, E.G., Healy, G.N., & Owen, N. (2011). Feasibility of reducing older adults’ sedentary time. American Journal of Preventive Medicine, 41, 174–177. PubMed ID: 21767725 doi:10.1016/j.amepre.2011.03.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, R.S., Mahnken, J.D., Swerdlow, R.H., Burns, J.M., Price, C., Amstein, B., … Vidoni, E.D. (2015). Open-source, rapid reporting of dementia evaluations. Journal of Registry Management, 42, 111. PubMed ID: 26779306

    • Search Google Scholar
    • Export Citation
  • Hamer, M., & Stamatakis, E. (2014). Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Medicine & Science in Sports & Exercise, 46, 718–723. PubMed ID: 24121248 doi:10.1249/MSS.0000000000000156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, M.T., Healy, G.N., Dunstan, D.W., Zderic, T.W., & Owen, N. (2008). Too Little Exercise and Too Much Sitting: Inactivity Physiology and the Need for New Recommendations on Sedentary Behavior. Current Cardiovascular Risk Reports, 2, 292–298. PubMed ID: 22905272 doi:10.1007/s12170-008-0054-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, J.A., Chastin, S.F., & Skelton, D.A. (2013). Prevalence of sedentary behavior in older adults: A systematic review. International Journal of Environmental Research and Public Health, 10, 6645–6661. PubMed ID: 24317382 doi:10.3390/ijerph10126645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, G.N., Matthews, C.E., Dunstan, D.W., Winkler, E.A., & Owen, N. (2011). Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. European Heart Journal, 32(5), 590–597. PubMed ID: 21224291 doi:10.1093/eurheartj/ehq451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, J., Yates, T., Biddle, S.J., Edwardson, C.L., Khunti, K., Wilmot, E.G., … Davies, M.J. (2013). Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia, 56, 1012–1020. PubMed ID: 23456209 doi:10.1007/s00125-013-2845-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollenberg, M., Ngo, L.H., Turner, D., & Tager, I.B. (1998). Treadmill exercise testing in an epidemiologic study of elderly subjects. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 53, B259–267. PubMed ID: 18314555 doi:10.1093/gerona/53A.4.B259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, X., & Cliff, D.P. (2015). Issues related to measuring and interpreting objectively measured sedentary behavior data. Measurement in Physical Education and Exercise Science, 19, 116–124. doi:10.1080/1091367X.2015.1045908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P.S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43, 1561–1567. PubMed ID: 21233777 doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, H.A., Fritsch, T., Petot, G., Smyth, K.A., Chen, C.H., Debanne, S.M., … Friedland, R.P. (2005). The relationships between television viewing in midlife and the development of Alzheimer’s disease in a case-control study. Brain and Cognition, 58, 157–165. PubMed ID: 15919546 doi:10.1016/j.bandc.2004.09.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi, P.D. (2015). Need for Increased Promotion of Physical Activity among Adults at Risk for Alzheimer’s Disease: A Brief Report. Journal of Physical Activity & Health, 12, 1601–1604. PubMed ID: 25710626 doi:10.1123/jpah.2014-0554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lövdén, M., Xu, W., & Wang, H.-X. (2013). Lifestyle change and the prevention of cognitive decline and dementia: What is the evidence? Current Opinion in Psychiatry, 26, 239–243. doi:10.1097/YCO.0b013e32835f4135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luchsinger, J.A. (2012). Type 2 diabetes and cognitive impairment: Linking mechanisms. Journal of Alzheimer’s Disease, 30, S185–S198. PubMed ID: 22433668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Keadle, S.K., Staudenmayer, J., & Freedson, P.S. (2014). A Method to Estimate Free-Living Active and Sedentary Behavior from an Accelerometer. Medicine & Science in Sports & Exercise, 46, 386–397. PubMed ID: 23860415 doi:10.1249/MSS.0b013e3182a42a2d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Kozey-Keadle, S.L., Staudenmayer, J.W., & Freedson, P.S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine & Science in Sports & Exercise, 44, 2243–2252. PubMed ID: 22648343 doi:10.1249/MSS.0b013e318260c477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., Fitzsimons, C., Jepson, R., Saunders, D.H., van der Ploeg, H.P., Teixeira, P.J., … Mutrie, N. (2015). Interventions with potential to reduce sedentary time in adults: Systematic review and meta-analysis. British Journal of Sports Medicine, 49(16), 1056–1063. PubMed ID: 25907181 doi:10.1136/bjsports-2014-094524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Chen, K.Y., Freedson, P.S., Buchowski, M.S., Beech, B.M., Pate, R.R., & Troiano, R.P. (2008). Amount of time spent in sedentary behaviors in the United States, 2003–2004. American Journal of Epidemiology, 167, 875–881. PubMed ID: 18303006 doi:10.1093/aje/kwm390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–939. PubMed ID: 6610841 doi:10.1212/WNL.34.7.939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikus, C.R., Oberlin, D.J., Libla, J.L., Taylor, A.M., Booth, F.W., & Thyfault, J.P. (2012). Lowering physical activity impairs glycemic control in healthy volunteers. Medicine & Science in Sports & Exercise, 44, 225–231. PubMed ID: 21716152 doi:10.1249/MSS.0b013e31822ac0c0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2412. PubMed ID: 8232972 doi:10.1212/WNL.43.11.2412-a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, J.K., Vidoni, E.D., Mahnken, J.D., Montgomery, R.N., Johnson, D.K., Thyfault, J.P., & Burns, J.M. (2016). Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiology of Aging, 39, 19–24. doi:10.1016/j.neurobiolaging.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owen, N., Healy, G.N., Matthews, C.E., & Dunstan, D.W. (2010). Too Much Sitting. Exercise Sport Science Reviews, 38, 105–113. doi:10.1097/JES.0b013e3181e373a2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Haskell, W.L., Albinali, F., Mota, S., Nawyn, J., & Intille, S. (2013). Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Medicine & Science in Sports & Exercise, 45, 964–975. PubMed ID: 23247702 doi:10.1249/MSS.0b013e31827f0d9c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeves, J.A., Bowles, H.R., McClain, J.J., Dodd, K.W., Brychta, R.J., Wang, J., & Chen, K.Y. (2015). Ability of thigh-worn actigraph and activPAL monitors to classify posture and motion. Medicine & Science in Sports & Exercise, 47, 952–959. PubMed ID: 25202847 doi:10.1249/MSS.0000000000000497

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyfault, J.P., Du, M., Kraus, W.E., Levine, J.A., & Booth, F.W. (2015). Physiology of sedentary behavior and its relationship to health outcomes. Medicine & Science in Sports & Exercise, 47(6), 1301–1305. doi:10.1249/MSS.0000000000000518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., … Chinapaw, M.J. (2017). Sedentary Behavior Research Network (SBRN)–Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14, 75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40, 181–188. doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Zheng, Y., Wong, W.-K. (2014). Machine learning for activity recognition: Hip versus wrist data. Physiological Measurement, 35, 2183–2189. PubMed ID: 25340887 doi:10.1088/0967-3334/35/11/2183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varma, V.R., & Watts, A. (2017). Daily Physical Activity Patterns During the Early Stage of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55, 659–667. PubMed ID: 27716669 doi:10.3233/JAD-160582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, M.W., Nagamatsu, L.S., Liu-Ambrose, T., & Kramer, A.F. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111, 1505–1513. PubMed ID: 21527670 doi:10.1152/japplphysiol.00210.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, A., Bevan, A., Breda, A., Befort, C., Thyfault, J., & Gardiner, P. (2017). Reducing sitting time in mild cognitive impairment: A pilot feasibility study. Proceedings of the Annual Meeting of the International Society for Behavioral Nutrition and Physical Activity, Victoria,BC, Canada.

    • Search Google Scholar
    • Export Citation
  • Watts, A., Walters, R.W., Hoffman, L., & Templin, J. (2016). Intra-individual variability of physical activity in older adults with and without mild Alzheimer’s disease. PLoS ONE, 11, e0153898. PubMed ID: 27097226 doi:10.1371/journal.pone.0153898

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M.J., Dempsey, P.C., Grace, M.S., Ellis, K.A., Gardiner, P.A., Green, D.J., & Dunstan, D.W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3, 291–300. PubMed ID: 29067335

    • Search Google Scholar
    • Export Citation
  • Yaffe, K., Blackwell, T., Kanaya, A.M., Davidowitz, N., Barrett-Connor, E., & Krueger, K. (2004). Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology, 63, 658–663. PubMed ID: 15326238 doi:10.1212/01.WNL.0000134666.64593.BA

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., & Hsu, Y.-L. (2009). Development of a wearable motion detector for telemonitoring and real-time identification of physical activity. Telemedicine and e-Health, 15, 62–72. PubMed ID: 19199849 doi:10.1089/tmj.2008.0060

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 64 64 6
Full Text Views 8 8 2
PDF Downloads 7 7 2