A Novel Method to Characterize Walking and Running Energy Expenditure

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Alyssa EvansBrigham Young University

Search for other papers by Alyssa Evans in
Current site
Google Scholar
PubMed
Close
*
,
Gavin Q. CollinsBrigham Young University

Search for other papers by Gavin Q. Collins in
Current site
Google Scholar
PubMed
Close
*
,
Parker G. RosquistBrigham Young University

Search for other papers by Parker G. Rosquist in
Current site
Google Scholar
PubMed
Close
*
,
Noelle J. TuttleBrigham Young University

Search for other papers by Noelle J. Tuttle in
Current site
Google Scholar
PubMed
Close
*
,
Steven J. MorrinBrigham Young University

Search for other papers by Steven J. Morrin in
Current site
Google Scholar
PubMed
Close
*
,
James B. TracyBrigham Young University

Search for other papers by James B. Tracy in
Current site
Google Scholar
PubMed
Close
*
,
A. Jake MerrellBrigham Young University

Search for other papers by A. Jake Merrell in
Current site
Google Scholar
PubMed
Close
*
,
William F. ChristensenBrigham Young University

Search for other papers by William F. Christensen in
Current site
Google Scholar
PubMed
Close
*
,
David T. FullwoodBrigham Young University

Search for other papers by David T. Fullwood in
Current site
Google Scholar
PubMed
Close
*
,
Anton E. BowdenBrigham Young University

Search for other papers by Anton E. Bowden in
Current site
Google Scholar
PubMed
Close
*
, and
Matthew K. SeeleyBrigham Young University

Search for other papers by Matthew K. Seeley in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Physical activity and corresponding energy expenditure can improve health in various ways. Existing methods to directly measure energy expenditure are currently limited to laboratory settings and/or expensive instrumentation. The purpose of this study was to evaluate accuracy of energy expenditure characterization, during walking and running, using demographic data, as well as data collected via an accelerometer and novel piezoresponsive foam sensors. Methods: 30 individuals (14 females; mass = 67 ± 10 kg; height = 1.74 ± 0.08 m; age = 23 ± 3 yrs) walked and ran at five speeds (1.34, 2.23, 2.68, 3.13, and 3.58 m/s) on a force-instrumented treadmill while wearing a metabolic analyzer and standardized athletic shoes instrumented with an accelerometer, and four novel nanocomposite piezoresponsive force sensors. Various predictive models, including demographic data and data derived from the accelerometer and force sensors, were evaluated for each gait speed. Results: The predictive models varied in ability to accurately characterize energy expenditure. For walking, the most accurate model included acceleration and body weight, and resulted in an average absolute error of 0.07 ± 0.03 kcal/min. For running, the most accurate model included sensor and acceleration data, and resulted in an average absolute error of 0.45 ± 0.14 kcal/min. Conclusions: When combined with acceleration data and body weight, the novel foam sensors can be used to inexpensively and accurately measure walking and running energy expenditure. This can be done at various speeds, outside of a traditional research laboratory. These results have application within a wide range of diverse contexts.

Evans, Rosquist, Tuttle, Morrin, Tracy, and Seeley are with the Dept. of Exercise Science, Brigham Young University, Provo, UT. Collins and Christensen are with the Dept. of Statistics, Brigham Young University, Provo, UT. Merrell, Fullwood, and Bowden are with the Dept. of Mechanical Engineering, Brigham Young University, Provo, UT.

Seeley (matt_seeley@byu.edu) is corresponding author.
  • Collapse
  • Expand
  • Alves, A.J., Viana, J.L., Cavalcante, S.L., Oliveira, N.L., Duarte, J.A., Mota, J., … Ribeiro, F. (2016). Physical activity in primary and secondary prevention of cardiovascular disease: Overview updated. World Journal of Cardiology, 8, 575583. PubMed ID: 27847558 doi:10.4330/wjc.v8.i10.575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beavis, A.L., Smith, A.J., & Fader, A.N. (2016). Lifestyle changes and the risk of developing endometrial and ovarian cancers: Opportunities for prevention and management. International Journal of Women’s Health, 8, 151167. PubMed ID: 27284267 doi:10.2147/IJWH.S88367

    • Search Google Scholar
    • Export Citation
  • Bird, E.T., Bowden, A.E., Seeley, M.K., & Fullwood, D.T. (2018). Materials selection of flexible open-cell foams in energy absorption applications. Materials & Design, 137, 414421. doi:10.1016/j.matdes.2017.10.054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouten, C.V., Sauren, A.A., Verduin, M., & Janssen, J.D. (1997). Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. Medical & Biological Engineering & Computing, 35, 5056. PubMed ID: 9136191 doi:10.1007/BF02510392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbert, L.H., Matthews, C.E., Havighurst, T.C., Kim, K., & Schoeller, D.A. (2011). Comparative validity of physical activity measures in older adults. Medicine & Science in Sports & Exercise, 43(5), 867876. PubMed ID: 20881882 doi:10.1249/MSS.0b013e3181fc7162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., & Browning, R.C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine & Science in Sports & Exercise, 45, 21052112. PubMed ID: 23669877 doi:10.1249/MSS.0b013e318299d2eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, K.M., Krupka, D.J., Chang, M.J., Peacock, J., Ma, Y., Goldsmith, J., … Davidson, K.W. (2015). Fitbit®: An accurate and reliable device for wireless physical activity tracking. International Journal of Cardiology, 185, 138140. PubMed ID: 25795203 doi:10.1016/j.ijcard.2015.03.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dondzila, C., & Garner, D. (2016). Comparative accuracy of fitness tracking modalities in quantifying energy expenditure. Journal of Medical Engineering & Technology, 40, 325329. PubMed ID: 27280592 doi:10.1080/03091902.2016.1197978

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, T., Rowlands, A.V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12, 42. PubMed ID: 25890168 doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamasaki, H. (2016). Daily physical activity and type 2 diabetes: A review. World Journal of Diabetes, 7, 243251. PubMed ID: 27350847 doi:10.4239/wjd.v7.i12.243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, L., Chen, P., Zhuang, J., Zhang, Y., & Walt, S. (2013). Metabolic Cost, Mechanical Work, and Efficiency During Normal Walking in Obese and Normal-Weight Children. Research Quarterly for Exercise and Sport, 84, 7279. PubMed ID: 24527569 doi:10.1080/02701367.2013.849159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imboden, M.T., Nelson, M.B., Kaminsky, L.A., & Montoye, A.H. (2018). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine, 52(13), 844850. PubMed ID: 28483930 doi:10.1136/bjsports-2016-096990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, T., Yang, W., Chen, C.-S., Reynolds, K., & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity, 32, 14311437. PubMed ID: 18607383 doi:10.1038/ijo.2008.102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K., de Marees, M., Braun, H., & Schaenzer, W. (2011). Evaluation of two portable sensors for energy expenditure assessment during high-intensity running. European Journal of Sport Science, 13, 3141. doi:10.1080/17461391.2011.586439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-M., Kim, Y., & Welk, G.J. (2014). Validity of consumer-based physical activity monitors. Medicine & Science in Sports & Exercise, 46, 18401848. PubMed ID: 24777201 doi:10.1249/MSS.0000000000000287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, E.J., Lewis, Z.H., Mayrsohn, B.G., & Rowland, J.L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16, e192. PubMed ID: 25131661 doi:10.2196/jmir.3469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannini, A., Rosenberger, M., Haskell, W.L., Sabatini, A.M., & Intille, S.S. (2017). Activity recognition in youth using single accelerometer placed at wrist or ankle. Medicine & Science in Sports & Exercise, 49, 801812. PubMed ID: 27820724 doi:10.1249/MSS.0000000000001144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrell, A.J., Christensen, W.F., Seeley, M.K., Bowden, A.E., & Fullwood, D.T. (2017). Nano-Composite Foam Sensor System in Football Helmets. Annals of Biomedical Engineering, 45, 27422749. PubMed ID: 28884239 doi:10.1007/s10439-017-1910-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzien, K.M., Jakicic, J.M., Tate, D.F., & Otto, A.D. (2007). The efficacy of a technology-based system in a short-term behavioral weight loss intervention. Obesity, 15, 825830. PubMed ID: 17426316 doi:10.1038/oby.2007.584

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, K., Bird, S.R., Lythgo, N., Raj, I.S., Wong, J.Y.L., & Lynch, C. (2017). Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Journal of Medical Engineering & Technology, 41, 208215. PubMed ID: 27919170 doi:10.1080/03091902.2016.1253795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raiber, L., Christensen, R.A.G., Jamnik, V.K., & Kuk, J.L. (2017). Accelerometer thresholds: Accounting for body mass reduces discrepancies between measures of physical activity for individuals with overweight and obesity. Applied Physiology, Nutrition, and Metabolism, 42:5358. PubMed ID: 28006438 doi:10.1139/apnm-2016-0303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosquist, P.G., Collins, G., Merrell, A.J., Tuttle, N.J., Tracy, J.B., Bird, E.T., … Bowden, A.E. (2017). Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking. Annals of Biomedical Engineering, 45, 21222134. PubMed ID: 28512701 doi:10.1007/s10439-017-1852-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., Hickey, A., Mavilia, M., Tedesco, J., John, D., Keadle, S.K., & Freedson, P.S. (2015). Validation of the Fitbit Wireless Activity Tracker for Prediction of Energy Expenditure. Journal of Physical Activity & Health, 12, 149154. PubMed ID: 24770438 doi:10.1123/jpah.2012-0495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlock, D.A., Fissinger, J.A., & Melby, C.L. (1989). Effect of exercise intensity and duration on postexercise energy expenditure. Medicine & Science in Sports & Exercise, 21, 662666. PubMed ID: 2626089 doi:10.1249/00005768-198912000-00006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., Mattsson, C.M., Waggott, D., Salisbury, H., Christle, J.W., Hastie, T., … Ashley, E.A. (2017). Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. Journal of Personalized Medicine, 7(2), 3. PubMed ID: 28538708 doi:10.3390/jpm7020003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuger, S.L., Barry, V.W., Sui, X., McClain, A., Hand, G.A., Wilcox, S., … Blair, S.N. (2011). Electronic feedback in a diet- and physical activity-based lifestyle intervention for weight loss: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 8, 41. PubMed ID: 21592351 doi:10.1186/1479-5868-8-41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, A.N., & Lachman, M.E. (2016). Behavior Change with Fitness Technology in Sedentary Adults: A Review of the Evidence for Increasing Physical Activity. Frontiers in Public Health, 4, 289. PubMed ID: 28123997 doi:10.3389/fpubh.2016.00289

    • Search Google Scholar
    • Export Citation
  • Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisløff, U., & Coombes, J.S. (2016). Accuracy of Heart Rate Watches: Implications for Weight Management. PLoS ONE, 11, e0154420. PubMed ID: 27232714 doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunderlich, R.E., Cavanagh, P.R. (2001). Gender differences in adult foot shape: Implications for shoe design. Medicine & Science in Sports & Exercise, 33, 605611. PubMed ID: 11283437. doi:10.1097/00005768-200104000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., & Hsu, Y.-L. (2010). A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors, 10, 77727788. PubMed ID: 22163626 doi:10.3390/s100807772

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1722 769 53
Full Text Views 18 5 1
PDF Downloads 10 4 1