Utility of Activity Monitors and Thermometry in Assessing Sleep Stages and Sleep Quality

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Activity monitors provide an inexpensive and convenient way to measure sleep, yet relatively few studies have been conducted to validate the use of these devices in examining measures of sleep quality or sleep stages and if other measures, such as thermometry, could inform their accuracy. The purpose of this study was to compare one research-grade and four consumer-grade activity monitors on measures of sleep quality (sleep efficiency, sleep onset latency, and wake after sleep onset) and sleep stages (awake, sleep, light, deep, REM) against an electroencephalography criterion. The use of a skin temperature device was also explored to ascertain whether skin temperature monitoring may provide additional data to increase the accuracy of sleep determination. Twenty adults stayed overnight in a sleep laboratory during which sleep was assessed using electroencephalography and compared to data concurrently collected by five activity monitors (research-grade: ActiGraph GT9X Link; consumer-grade: Fitbit Charge HR, Fitbit Flex, Jawbone UP4, Misfit Flash) and a skin temperature sensor (iButton). The majority of the consumer-grade devices overestimated total sleep time and sleep efficiency while underestimating sleep onset latency, wake after sleep onset, and number of awakenings during the night, with similar results being seen in the research-grade device. The Jawbone UP4 performed better than both the consumer- and research-grade devices, having high levels of agreement overall and in epoch-by-epoch sleep stage data. Changes in temperature were moderately correlated with sleep stages, suggesting that addition of skin temperature could increase the validity of activity monitors in sleep measurement.

Swalve is with the Dept. of Psychology; Harfmann, Mitrzyk, and Montoye are with the Dept. of Integrative Physiology and Health Science; Alma College, Alma, MI.

Swalve (swalvenl@alma.edu) is corresponding author.
  • Adam, K., Tomeny, M., & Oswald, I. (1986). Physiological and psychological differences between good and poor sleepers. Journal of Psychiatric Research, 20(4), 301316. PubMed ID: 3806425 doi:10.1016/0022-3956(86)90033-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altman, D.G. (1991). Mathematics for kappa. Practical Statistics for Medical Research,, 406407.

  • Bastien, C.H., Vallières, A., & Morin, C.M. (2001). Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297307. PubMed ID: 11438246 doi:10.1016/S1389-9457(00)00065-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beattie, Z., Oyang, Y., Statan, A., Ghoreyshi, A., Pantelopoulos, A., Russell, A., & Heneghan, C. (2017). Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiological Measurement, 38(11), 19681979. PubMed ID: 29087960 doi:10.1088/1361-6579/aa9047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buysse, D.J., Reynolds, C.F., Monk, T. H., Berman, S.R., & Kupfer, D.J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193213. PubMed ID: 2748771 doi:10.1016/0165-1781(89)90047-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carskadon, M.A., & Rechtschaffen, A. (2000). Monitoring and staging human sleep. Principles and Practice of Sleep Medicine, 3, 11971215.

    • Search Google Scholar
    • Export Citation
  • Center for Disease Control. (2016, February 18). CDC Newsroom. Retrieved from https://www.cdc.gov/media/releases/2016/p0215-enough-sleep.html

    • Export Citation
  • Cole, R.J., Kripke, D.F., Gruen, W., Mullaney, D.J., & Gillin, J.C. (1992). Automatic sleep/wake identification from wrist activity. Sleep, 15(5), 461469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, J.D., Prairie, M.L., & Plante, D.T. (2017). Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. Journal of Affective Disorders, 217, 299305. PubMed ID: 28448949 doi:10.1016/j.jad.2017.04.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dew, M.A., Hoch, C.C., Buysse, D.J., Monk, T.H., Begley, A.E., Houck, P.R., & Reynolds, C.F., III. (2003). Healthy older adults’ sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosomatic Medicine, 65(1), 6373. PubMed ID: 12554816 doi:10.1097/01.PSY.0000039756.23250.7C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Zambotti, M., Baker, F.C., & Colrain, I.M. (2015). Validation of sleep-tracking technology compared with polysomnography in adolescents. Sleep, 38(9), 14611468. PubMed ID: 26158896 doi:10.5665/sleep.4990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Zambotti, M., Claudatos, S., Inkelis, S., Colrain, I.M., & Baker, F.C. (2015). Evaluation of a consumer fitness-tracking device to assess sleep in adults. Chronobiology International, 32(7), 10241028. PubMed ID: 26158542 doi:10.3109/07420528.2015.1054395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Zambotti, M., Goldstone, A., Claudatos, S., Colrain, I.M., & Baker, F.C. (2018). A validation study of Fitbit Charge 2™ compared with polysomnography in adults. Chronobiology International, 35(4), 465476. PubMed ID: 29235907 doi:10.1080/07420528.2017.1413578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durmer, J.S., & Dinges, D.F. (2005, March). Neurocognitive consequences of sleep deprivation. In Seminars in neurology (Vol. 25, No. 01, pp. 117129). New York, NY: Thieme Medical Publishers, Inc.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, T., Rowlands, A.V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 42. PubMed ID: 25890168 doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselberg, M.J., McMahon, J., & Parker, K. (2013). The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research. Sleep Medicine, 14(1), 511. PubMed ID: 21470909 doi:10.1016/j.sleep.2010.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillman, D.R., Murphy, A.S., Antic, R., & Pezzullo, L. (2006). The economic cost of sleep disorders. Sleep, 29(3), 299305. PubMed ID: 16553015 doi:10.1093/sleep/29.3.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irwin, M.R. (2015). Why sleep is important for health: a psychoneuroimmunology perspective. Annual Review of Psychology, 66, 143172. PubMed ID: 25061767 doi:10.1146/annurev-psych-010213-115205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.G., Park, J.Y., Lee, C.K., An, S.K., & Yoo, S.K. (2010). Genetic fuzzy classifier for sleep stage identification. Computers in Biology and Medicine, 40(7), 629634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kräuchi, K. (2007). The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiology & Behavior, 90(2–3), 236245. PubMed ID: 17049364 doi:10.1016/j.physbeh.2006.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripke, D.F., Garfinkel, L., Wingard, D.L., Klauber, M.R., & Marler, M.R. (2002). Mortality associated with sleep duration and insomnia. Archives of General Psychiatry, 59(2), 131136. PubMed ID: 11825133 doi:10.1001/archpsyc.59.2.131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landholt, H.P., Moser, S., Wieser, H.G., Borbély, A.A., & Dijk, D.J. (1995). Intracranial temperature across 24-hour sleep-wake cycles in humans. NeuroReport, 6(6), 913917. PubMed ID: 7612882 doi:10.1097/00001756-199504190-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., & Finkelstein, J. (2014). Activity trackers: a critical review. Studies in Health Technology and Informatics, 205, 558562. PubMed ID: 25160247

    • Search Google Scholar
    • Export Citation
  • Lee, P.H., & Suen, L.K. (2017). The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Sleep and Breathing, 21(1), 209215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallon, L., Broman, J.E., & Hetta, J. (2002). Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. Journal of Internal Medicine, 251(3), 207216. PubMed ID: 11886479 doi:10.1046/j.1365-2796.2002.00941.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, C.L., Chapman, D., Ward, S. D., McColley, S.A., Herrerias, C.T., Stillwell, P.C., & Laskosz, L.N. (2002). Clinical practice guideline: diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics, 109(4), 704712. PubMed ID: 12456928 doi:10.1542/peds.109.4.704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meltzer, L.J., Hiruma, L.S., Avis, K., Montgomery-Downs, H., & Valentin, J. (2015). Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents. Sleep, 38(8), 13231330. PubMed ID: 26118555 doi:10.5665/sleep.4918

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery-Downs, H.E., Insana, S.P., & Bond, J.A. (2012). Movement toward a novel activity monitoring device. Sleep and Breathing, 16(3), 913917. PubMed ID: 21971963 doi:10.1007/s11325-011-0585-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz-Tudela, E., Martinez-Nicolas, A., Albares, J., Segarra, F., Campos, M., Estivill, E., & Madrid, J.A. (2014). Ambulatory circadian monitoring (ACM) based on thermometry, motor activity and body position (TAP): a comparison with polysomnography. Physiology & Behavior, 126, 3038. PubMed ID: 24398067 doi:10.1016/j.physbeh.2013.12.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quante, M., Kaplan, E.R., Cailler, M., Rueschman, M., Wang, R., Weng, J., & Redline, S. (2018). Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms. Nature and Science of Sleep, 10, 1320. PubMed ID: 29403321 doi:10.2147/NSS.S151085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ram, S., Seirawan, H., Kumar, S.K., & Clark, G.T. (2010). Prevalence and impact of sleep disorders and sleep habits in the United States. Sleep and Breathing, 14(1), 6370. PubMed ID: 19629554 doi:10.1007/s11325-009-0281-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology and scoring system for sleep stages of human subjects. Los Angeles: Brain Information Service: Brain Research Institute, University of California at Los Angeles.

    • Search Google Scholar
    • Export Citation
  • Russo, K., Goparaju, B., & Bianchi, M.T. (2015). Consumer sleep monitors: is there a baby in the bathwater? Nature and Science of Sleep, 7, 147. PubMed ID: 26604847 doi:10.2147/NSS.S94182

    • Search Google Scholar
    • Export Citation
  • Sadeh, A. (2011). The role and validity of actigraphy in sleep medicine: an update. Sleep Medicine Reviews, 15(4), 259267. PubMed ID: 21237680 doi:10.1016/j.smrv.2010.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeh, A., Sharkey, M., & Carskadon, M.A. (1994). Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep, 17(3), 201207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sano, A., Picard, R.W., & Stickgold, R. (2014). Quantitative analysis of wrist electrodermal activity during sleep. International Journal of Psychophysiology, 94(3), 382389. PubMed ID: 25286449 doi:10.1016/j.ijpsycho.2014.09.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sargent, C., Lastella, M., Halson, S.L., & Roach, G.D. (2016). The validity of activity monitors for measuring sleep in elite athletes. Journal of Science and Medicine in Sport, 19(10), 848853. PubMed ID: 26794719 doi:10.1016/j.jsams.2015.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrivastava, D., Jung, S., Saadat, M., Sirohi, R., & Crewson, K. (2014). How to interpret the results of a sleep study. Journal of Community Hospital Internal Medicine Perspectives, 4(5), 24983. doi:10.3402/jchimp.v4.24983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silber, M.H., Ancoli-Israel, S., Bonnet, M.H., Chokroverty, S., Grigg-Damberger, M.M., Hiroshkowitz, M., & Pressman, M.R. (2007). The visual scoring of sleep in adults. Journal of Clinical Sleep Medicine, 3(2), 121131. PubMed ID: 17557422

    • Search Google Scholar
    • Export Citation
  • Sindrup, J.H., Kastrup, J., & Jørgensen, B. (1991). Regional variations in nocturnal fluctuations in subcutaneous blood flow rate in the lower leg of man. Clinical Physiology, 11(6), 491499. PubMed ID: 1769184 doi:10.1111/j.1475-097X.1991.tb00669.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, E., Davey, M.J., Hollis, S.L., Nixon, G.M., Horne, R.S., & Biggs, S.N. (2016). Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. Journal of Clinical Sleep Medicine, 12(3), 343350. PubMed ID: 26446248 doi:10.5664/jcsm.5580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hilten, J.J, Middelkoop, H.A.M, Kuiper, S.I.R, Kramer, C.G.S., & Roos, R.A.C (1993). Where to record motor activity: an evaluation of commonly used sites of placement for activity monitors. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 89(5), 359362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vgontzas, A.N., Fernandez-Mendoza, J., Liao, D., & Bixler, E.O. (2013). Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Medicine Reviews, 17(4), 241254. PubMed ID: 23419741 doi:10.1016/j.smrv.2012.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J.K., & Engelhardt, C.L. (1999). The direct economic costs of insomnia in the United States for 1995. Sleep, 22, 386393. PubMed ID: 10394612

    • Search Google Scholar
    • Export Citation
  • Wells, G., Li, T., & Tugwell, P. (2010). Investigation into the impact of abatacept on sleep quality in patients with rheumatoid arthritis, and the validity of the MOS-Sleep questionnaire Sleep Disturbance Scale. Annals of the Rheumatic Diseases, 69(10):17681773. PubMed ID: 20610444 doi:10.1136/ard.2009.119727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitworth-Turner, C., Di Michele, R., Muir, I., Gregson, W., & Drust, B. (2017). A shower before bedtime may improve the sleep onset latency of youth soccer players. European Journal of Sport Science, 17(9), 11191128. PubMed ID: 28691581 doi:10.1080/17461391.2017.1346147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavada, A., Gordijn, M.C., Beersma, D.G., Daan, S., & Roenneberg, T. (2005). Comparison of the Munich Chronotype Questionnaire with the Horne-Östberg’s morningness-eveningness score. Chronobiology International, 22(2), 267278. PubMed ID: 16021843 doi:10.1081/CBI-200053536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Wang, B., Jing, J., Zhang, J., Zou, J., & Nakamura, M. (2017). A comparison study on multidomain EEG features for sleep stage classification. Computational Intelligence and Neuroscience. doi:10.1155/2017/4574079

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 128 128 32
Full Text Views 1 1 0
PDF Downloads 1 1 0