Heart Rate Equivalency of the Fitbit Charge HR During Continuous Aerobic Exercise

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of Delaware
  • 2 University of Rhode Island
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Purpose: Consumer-grade wrist-worn activity monitors frequently include photoplethysmography (PPG) sensors for estimating heart rate (HR). The Fitbit Charge HR is marketed specifically for tracking fitness; therefore, HR accuracy is critical, especially during exercise. This study examined HR equivalency of the Fitbit Charge HR during continuous aerobic exercise. Method: Participants (N = 19) concurrently wore a Polar H1 and Fitbit Charge HR during a measurement visit that included seated rest (5 minutes), warm-up (5 minutes), continuous treadmill exercise (30 minutes), and cool-down (5–10 minutes). Mean HR differences were examined by protocol phase, total activity (i.e., warm-up, exercise, and cool-down combined), and the first, middle, and last 5 minutes of continuous exercise. Mean absolute percent error (MAPE), Bland-Altman plots, and 95% equivalence testing explained overall and individual HR agreement between devices. Results: The Fitbit Charge HR significantly underestimated HR for all measurement phases (all p ≤ .01) except cool-down (p > .33). HR agreement was notably weaker during warm-up (r = 0.66, d = 0.57) and differences were greatest for the first 5 minutes compared to the middle and end of exercise (6.94±2.16 beats per minute [bpm] vs. 1.76±0.59 bpm, and 1.74±0.58 bpm), F = 4.87, p = .04). Mean exercise HRs were equivalent between devices (±2.69 bpm, 95% CI: 1.41–3.97 bpm); MAPE was 1.96%. Conclusion: The Fitbit Charge HR is relatively accurate for measuring HR during continuous aerobic exercise. Whereas the accuracy of PPG-based HR appears limited at exercise onset, agreement improves throughout the exercise bout and HR differences are negligible.

Stock and Edwards are with the Dept. of Kinesiology and Applied Physiology, University of Delaware, Newark, DE. Pohlig is with the Biostatistics Core Facility, University of Delaware, Newark, DE. Botieri is with the College of Health Sciences, University of Rhode Island, Kingston, RI. Dominick is with the Dept. of Behavioral Health and Nutrition, University of Delaware, Newark, DE.

Address author correspondence to Gregory M. Dominick at gdominic@udel.edu.
  • Alharbi, M., Bauman, A., Neubeck, L., & Gallagher, R. (2016). Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. European Journal of Preventive Cardiology, 23(14):14761485. PubMed ID: 26907794 doi:10.1177/2047487316634883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3), 139. PubMed ID: 17322588 doi:10.1088/0967-3334/28/3/R01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Heart Association. (2016). Target Heart Rates. Retrieved from https://healthyforgood.heart.org/move-more/articles/target-heart-rates#.WNgWGXk2xMw

    • PubMed
    • Export Citation
  • Bai, Y., Welk, G.J., Nam, Y.H., Lee, J.A., Lee, J.M., Kim, Y., … Dixon, P.M. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise, 48(1), 151158. PubMed ID: 26154336 doi:10.1249/MSS.0000000000000727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreira, T.V., Kang, M., Caputo, J.L., Farley, R.S., & Renfrow, M.S. (2009). Validation of the Actiheart monitor for the measurement of physical activity. International Journal of Exercise Science, 2(1), 6071.

    • Search Google Scholar
    • Export Citation
  • Blair, S.N., Kohl, H.W., Paffenbarger, R.S., Clark, D.G., Cooper, K.H., & Gibbons, L.W. (1989). Physical fitness and all-cause mortality: A prospective study of healthy men and women. Journal of the American Medical Association, 262(17), 23952401. PubMed ID: 2795824 doi:10.1001/jama.1989.03430170057028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brage, S., Brage, N., Franks, P.W., Ekelund, U., Wong, M.Y., Andersen, L.B., & Wareham, N.J. (2004). Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Physiology, 96(1), 343351. PubMed ID: 12972441 doi:10.1152/japplphysiol.00703.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brage, S., Ekelund, U., Brage, N., Hennings, M.A., Froberg, K., Franks, P.W., & Wareham, N.J. (2007). Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. Journal of Applied Physiology, 103(2), 682692. PubMed ID: 17463305 doi:10.1152/japplphysiol.00092.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bredin, S.S.D., Gledhill, N., Jamnik, V.K., & Warburton, D.E.R. (2013). PAR-Q+ and ePARmed-X+: New risk stratification and physical activity clearance strategy for physicians and patients alike. Canadian Family Physician, 59(3), 273277. PubMed ID: 23486800

    • Search Google Scholar
    • Export Citation
  • Bunn, J.A., Navalta, J.W., Fountaine, C.J., & Reece, J.D. (2018). Current state of commercial wearable technology in physical activity monitoring 2015-2017. International Journal of Exercise Science, 11(7), 503515. PubMed ID: 29541338

    • Search Google Scholar
    • Export Citation
  • Burke, L.E., Wang, J., Sevick, M.A. (2011). Self-monitoring in weight loss: A systematic review of the literature. Journal of the American Dietetic Association, 111(1), 92102. PubMed ID: 21185970 doi:10.1016/j.jada.2010.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadmus-Bertram, L., Gangnon, R., Wirkus, E.J., Thraen-Borowski, K.M., & Gorzelitz-Liebhauser, J. (2017). The accuracy of heart rate monitoring by some wrist-worn activity trackers. Annals of Internal Medicine, 167(8), 607608. PubMed ID: 29049770 doi:10.7326/L17-0380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominick, G.M., Winfree, K.N., Pohlig, R.T., & Papas, M.A. (2016). Physical activity assessment between consumer- and research-grade accelerometers: A comparative study in free-living conditions. JMIR mHealth and uHealth, 4(3):e110. PubMed ID: 27644334 doi:10.2196/mhealth.6281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dondzila, C.J., Lewis, C.A., Lopez, J.R., & Parker, T.M. (2018). Congruent accuracy of wrist-worn activity trackers during controlled and free-living conditions. International Journal of Exercise Science, 11(7), 575584.

    • Search Google Scholar
    • Export Citation
  • Dooley, E.E., Golaszewski, N.M., & Bartholomew, J.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth and uHealth, 5(3), e34. PubMed ID: 28302596 doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. The International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallow, B.A., Tarumi, T., & Tanaka, H. (2013). Influence of skin type and wavelength on light wave reflectance. Journal of Clinical Monitoring and Computing, 27(3), 313317. PubMed ID: 23397431 doi:10.1007/s10877-013-9436-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitbit. (2017a). Fitbit announces preliminary fourth quarter 2016 results. Retrieved from https://investor.fitbit.com/press/press-releases/press-release-details/2017/Fitbit-Announces-Preliminary-Fourth-Quarter-2016-Results/default.aspx

    • Export Citation
  • Fitbit. (2017b). Heart rate during workouts. Best practices for PurepulseTM accuracy. Retrieved from https://www.fitbit.com/purepulse-tips

    • Export Citation
  • Fitbit. (2017c). What should I know about my heart rate data? Retrieved from https://help.fitbit.com/articles/en_US/Help_article/1565#zones

    • Export Citation
  • Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., & Swain, D.P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 13341359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodie, J.L., Larkin, K.T., & Schauss, S. (2000). Validation of the Polar heart rate monitor for assessing heart rate during physical and mental stress. Journal of Psychophysiology, 14(3), 159164. doi:10.1027//0269-8803.14.3.159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haskell, W.L., Lee, I.M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., & Bauman, A. (2007). Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise, 39(8), 14231434. PubMed ID: 17762377 doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hough, P., Glaister, M., & Pledger, A. (2017). The accuracy of wrist-worn heart rate monitors across a range of exercise intensities. Journal of Physical Activity Research, 2(2), 112116. doi:10.12691/jpar-2-2-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, E., Lewis, K., Directo, D., Kim, M.J.Y., & Dolezal, B.A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science & Medicine, 15(3), 540547. PubMed ID: 27803634

    • Search Google Scholar
    • Export Citation
  • Joyner, M.J., & Casey, D.P. (2015). Regulation of increased blood flow (Hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiological Reviews, 95(2), 549601. PubMed ID: 25834232 doi:10.1152/physrev.00035.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellogg, D.L., Johnson, J.M., & Kosiba, W.A. (1991). Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise. Journal of Applied Physiology, 71(6), 24762482. PubMed ID: 1778949 doi:10.1152/jappl.1991.71.6.2476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korthuis, R.J. (2011). Skeletal muscle circulation (pp. 9-10, 28-29, 45-46). San Rafael (CA): Morgan & Claypool Life Sciences.

  • Lee, C.M., & Gorelick, M. (2011). Validity of the Smarthealth Watch to measure heart rate during rest and exercise. Measurement in Physical Education and Exercise Science, 15(1), 1825. doi:10.1080/1091367X.2011.539089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.M., Kim, Y., & Welk, G.J. (2014). Validity of consumer-based physical activity monitors. Medicine & Science in Sport & Exercise, 46(9), 18401848. PubMed ID: 24777201 doi:10.1249/MSS.0000000000000287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loney, T., Standage, M., Thompson, D., Sebire, S.J., & Cumming, S. (2011). Self-report vs. objectively assessed physical activity: Which is right for public health? Journal of Physical Activity & Health, 8, 6270. PubMed ID: 21297186 doi:10.1123/jpah.8.1.62

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michie, S., Abraham, C., Whittington, C., McAteer, J., & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychology, 28(6), 690701. PubMed ID: 19916637 doi:10.1037/a0016136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Mitrzyk, J.R., & Molesky, M.J. (2017). Comparative accuracy of a wrist-worn activity tracker and a smart shirt for physical activity assessment. Measurement in Physical Education and Exercise Science, 21(4), 201211. doi:10.1080/1091367X.2017.1331166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polar Electro Oy. (2013). Polar Soft Strap. Polar H1 Heart Rate Sensor. Polar H2 Heart Rate Sensor. User Manual. Retrieved from https://support.polar.com/e_manuals/H1_H2_Heart_Rate_Sensor/Polar_H1_H2_Heart_Rate_Sensor_accessory_manual_English.pdf

    • Search Google Scholar
    • Export Citation
  • Sallis, J.F., & Saelens, B.E. (2000). Assessment of physical activity by self-report: Status, limitations, and future directions. Research Quarterly for Exercise and Sport, 71(Suppl 2), 114. doi:10.1080/02701367.2000.11082780

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spierer, D.K., Rosen, Z., Litman, L.L., & Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of Medical Engineering & Technology, 39(5), 264271. PubMed ID: 26112379 doi:10.3109/03091902.2015.1047536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, S.E., An, H.S., Dinkel, D.M., Noble, J.M., & Lee, J.M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine, 2(1):e000106. PubMed ID: 27900173 doi:10.1136/bmjsem-2015-000106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., Monahan, K.D., & Seals, D.R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153156. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terbizan, D.J., Dolezal, B.A., & Albano, C. (2002). Validity of seven commercially available heart rate monitors. Measurement in Physical Education and Exercise Science, 6(4), 243247. doi:10.1207/S15327841MPEE0604_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48, 10191023. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisløff, U., & Coombes, J.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS ONE, 11(5):e0154420. PubMed ID: 27232714 doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 139 22
Full Text Views 7 7 0
PDF Downloads 7 7 0