RADVis: A Software Tool for the Visual Investigation of Raw Accelerometry Data

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

The authors employed MATLAB to develop the Raw Accelerometry Data Visualization (RADVis) tool for the examination of the raw accelerometry data collected with GENEActiv and ActiGraph devices. The graphical user interface provided enables efficient exploration of the acceleration signals without advanced computational skills. RADVis allows plotting of the tri-axial data, vector magnitude, and statistical summaries of the subsets of up to two different signals. Visual comparisons between the zoomed-in fragments of the signals are enabled via the drop-down menus and user-selected zoom-in parameters. In this technical note, we demonstrate the utility of RADVis on sample data collected during a pilot study of walking and car driving.

Straczkiewicz and Harezlak are with the Dept. of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN. Urbanek is with the Division of Geriatric Medicine and Gerontology, Dept. of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.

Straczkiewicz (mstraczk@iu.edu) is corresponding author.
  • Bai, J., Di, C., Xiao, L., Evenson, K.R., LaCroix, A.Z., Crainiceanu, C.M., & Buchner, D.M. (2016). An activity index for raw accelerometry data and its comparison with other activity metrics. PLoS One, 11(8), 0160644. PubMed ID: 27513333 doi:10.1371/journal.pone.0160644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidargaddi, N., Sarela, A., Klingbeil, L., & Karunanithi, M. (2007, December). Detecting walking activity in cardiac rehabilitation by using Accelerometer. Paper presented at the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, QLD, Australia

    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., & Arvidsson, D. (2016). Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. Journal of Applied Physiology, 120(3), 362–369. PubMed ID: 26635347 doi:10.1152/japplphysiol.00628.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeschke, L., Luzak, A., Steinbrecher, A., Jeran, S., Ferland, M., Linkohr, B., . . . Pischon, T. (2017). 24h-accelerometry in epidemiological studies: Automated detection of non-wear time in comparison to diary information. Scientific Reports, 7, 2227. PubMed ID: 28533553 doi:10.1038/s41598-017-01092-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, D., Sasaki, J., Staudenmayer, J., Mavilia, M., & Freedson, P. (2013). Comparison of raw acceleration from the GENEA and ActiGraph™ GT3X+ activity monitors. Sensors, 13(11), 14754–14763. PubMed ID: 24177727 doi:10.3390/s131114754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Keadle, S.K., Staudenmayer, J., & Freedson, P. (2014). A method to estimate free-living active and sedentary behavior from an accelerometer. Medicine & Science in Sports & Exercise, 46, 386–397. PubMed ID: 23860415 doi:10.1249/MSS.0b013e3182a42a2d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrack, J., Zipunnikov, V., & Crainiceanu, C. (2015). Electronic devices and applications to track physical activity. Journal of the American Medical Association, 313, 2079–2080. PubMed ID: 26010643 doi:10.1001/jama.2015.3877

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. Journal of Physical Activity and Health, 11(1), 76–84. PubMed ID: 23249722 doi:10.1123/jpah.2011-0347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straczkiewicz, M., Urbanek, J., Fadel, W., Crainiceanu, C., & Harezlak, J. (2016). Automatic car driving detection using raw accelerometry data. Physiological Measurement, 37, 1757–1769. PubMed ID: 27653528 doi:10.1088/0967-3334/37/10/1757

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181–188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urbanek, J., Harezlak, J., Glynn, N.W., Harris, T., Crainiceanu, C., & Zipunnikov, V. (2017). Stride variability measures derived from wrist- and hip-worn accelerometers. Gait & Posture, 52, 217–223. PubMed ID: 27936440 doi:10.1016/j.gaitpost.2016.11.045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urbanek, J., Zipunnikov, V., Harris, T., Fadel, W., Glynn, N., Koster, A., . . . Harezlak, J. (2018). Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. Physiological Measurement, 39(2), 02NT02. PubMed ID: 29329110 doi:10.1088/1361-6579/aaa74d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Domelen, D.R. (2015). Accelerometry-package: Functions for processing minute-to-minute accelerometer data. R package version 2.2.5. Retrieved from http://CRAN.R-project.org/package=accelerometry

    • Search Google Scholar
    • Export Citation
  • Van Domelen, D.R., & Pittard, W.S. (2014). Flexible R functions for processing accelerometer data, with emphasis on NHANES 2003-2006. The R Journal, 6(2), 52–62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Domelen, D.R., Pittard, W.S., & Harris, T.B. (2014). nhanesaccel: Process accelerometer data from NHANES 2003–2006. R package version 2.1.1. Retrieved from http://r-forge.r-project.org/projects/nhanesaccel

    • Search Google Scholar
    • Export Citation
  • van Hess, V., Fang, Z., Zhao, J.H., Heywood, J., Mirkes, E., Sabia, S., & Migueles, J.H. (2017). GGIR: Raw accelerometer data analysis. R package version 1.5–12. Retrieved from https://CRAN.R-project.org/package=GGIR

    • Search Google Scholar
    • Export Citation
  • Welch, W.A., Bassett, D.R., Thompson, D.L., Freedson, P., Staudenmayer, J., John, D., . . . Fitzhugh, E.C. (2013). Classification accuracy of the wrist-worn gravity estimator of normal everyday activity accelerometer. Medicine & Science in Sports & Exercise, 45(10), 2012–2019. PubMed ID: 23584403 doi:10.1249/MSS.0b013e3182965249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M., Zheng, H., Wang, H., McClean, S., & Newell, D. (2012). iGAIT: An interactive accelerometer based gait analysis system. Computer Methods and Programs in Biomedicine, 108(2), 715–723. PubMed ID: 22575802 doi:10.1016/j.cmpb.2012.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S.-M., Hill, R.A., Morgan, K., Stratton, G., Gravenor, M.B., Bijlsma, G., & Brophy, S. (2015). Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. BMJ Open, 5(5), e007447. PubMed ID: 25968000 doi:10.1136/bmjopen-2014-007447

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 123 123 20
Full Text Views 1 1 1
PDF Downloads 1 1 1