Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Purpose: To examine the effect of brief, intermittent stepping bouts on step counts from 10 physical activity monitors (PAMs). Methods: Adults (N = 21; M ± SD, 26 ± 9.0 yr) wore four PAMs on the wrist (Garmin Vivofit 2, Fitbit Charge, Withings Pulse Ox, and ActiGraph wGT3X-BT [AG]), four on the hip (Yamax Digi-Walker SW-200 [YX], Fitbit Zip, Omron HJ-322U, and AG), and two on the ankle (StepWatch [SW] with default and modified settings). AG data were processed with and without the low frequency extension (AGL) and with the Moving Average Vector Magnitude algorithm. In Part 1 (five trials), walking bouts were varied (4–12 steps) and rest intervals were held constant (10 s). In Part 2 (six trials), walking bouts were held constant (4 steps) and rest intervals were varied (1–10 s). Percent of hand-counted steps and mean absolute percentage error were calculated. One sample t-test was used to compare percent of hand-counted steps to 100%. Results: In Parts 1 and 2, the SWdefault, SWmodified, YX, and AGLhip captured within 10% of hand-counted steps across nearly all conditions. In Part 1, estimates of most methods improved as the number of steps per bout increased. In Part 2, estimates of most methods decreased as the rest duration increased. Conclusion: Most methods required stepping bouts of >6–10 consecutive steps to record steps. Rest intervals of 1–2 seconds were sufficient to break up walking bouts in many methods. The requirement for several consecutive steps in some methods causes an underestimation of steps in brief, intermittent bouts.

Toth, Park, Pittman, Sarisaltik, Hibbing, Morton, Crouter, and Bassett are with the Department of Kinesiology, Recreation, and Sport Studies; Springer is with the Office of Information Technology, Research Computing Support; The University of Tennessee, Knoxville, TN.

Toth (Ltoth2@vols.utk.edu) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • ActiGraph LLC. (2016). Low frequency extension explained. Retrieved from https://actigraph.desk.com/customer/portal/articles/2515505

  • AssalM.AhmadA.C.LacrazA.CourvoisierD.S.SternR. & CrevoisierX. (2011). Step activity monitoring to assess ambulation before and after total ankle arthroplasty. Foot and Ankle Surgery 17(3) 136139. PubMed ID: 21783073 doi:10.1016/j.fas.2010.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassettD.R.WyattH.R.ThompsonH.PetersJ.C. & HillJ.O. (2010). Pedometer-measured physical activity and health behaviors in United States adults. Medicine & Science in Sports & Exercise 42(10) 18191825. PubMed ID: 20305579 doi:10.1249/MSS.0b013e3181dc2e54

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BooneD.A. & ColemanK.L. (2006). Use of a step activity monitor in determining outcomes. Journal of Prosthetics and Orthotics 18(6) 8692. doi:10.1097/00008526-200601001-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BravataD.M.Smith-SpanglerC.SundaramV.GiengerA.L.LinN.LewisR.SirardJ.R. (2007). Using pedometers to increase physical activity and improve health: A systematic review. Journal of the American Medical Association 298(19) 22962304. PubMed ID: 18029834 doi:10.1001/jama.298.19.2296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BumanM.P.WinklerE.A.KurkaJ.M.HeklerE.B.BaldwinC.M.OwenN.GardinerP.A. (2014). Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. American Journal of Epidemiology 179(3) 323334. PubMed ID: 24318278 doi:10.1093/aje/kwt292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenM.D.KuoC.C.PellegriniC.A. & HsuM.J. (2016). Accuracy of wristband activity monitors during ambulation and activities. Medicine & Science in Sports & Exercise 48(10) 19421949. PubMed ID: 27183123 doi:10.1249/MSS.0000000000000984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ColleyR.C.GarriguetD.JanssenI.CraigC.L.ClarkeJ. & TremblayM.S. (2011). Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009 Canadian health measures survey. Health Reports 22(1) 7. PubMed ID: 21510585

    • Search Google Scholar
    • Export Citation
  • Consumer Technology Association Technology & Standards Department. (2016). Physical activity monitoring for fitness wearables: Step counting. Arlington, VA: Author.

    • Search Google Scholar
    • Export Citation
  • CrespoC.J.KeteyianS.J.HeathG.W. & SemposC.T. (1996). Leisure-time physical activity among US adults: Results from the third national health and nutrition examination survey. Archives of Internal Medicine 156(1) 9398. PubMed ID: 8526703 doi:10.1001/archinte.1996.00440010113015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CrouterS.ESchneiderP.LKarabulutM. & BassettD.R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine & Science in Sports & Exercise 35(8) 14551460. PubMed ID: 12900704 doi:10.1249/01.MSS.0000078932.61440.A2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiazK.M.KrupkaD.J.ChangM.J.PeacockJ.MaY.GoldsmithJ.DavidsonK.W. (2015). Fitbit®: An accurate and reliable device for wireless physical activity tracking. International Journal of Cardiology 185138140. PubMed ID: 25795203 doi:10.1016/j.ijcard.2015.03.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DondzilaC.J.SwartzA.M.MillerN.E.LenzE.K. & StrathS.J. (2012). Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. International Journal of Behavioral Nutrition and Physical Activity 9(1) 143 doi:10.1186/1479-5868-9-143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DwyerT.HosmerD.HosmerT.VennA.BlizzardC.GrangerR.ZimmetP. (2007). The inverse relationship between number of steps per day and obesity in a population-based sample-the AusDiab study. International Journal of Obesity 31(5) 797804. PubMed ID: 17047641 doi:10.1038/sj.ijo.0803472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EvensonK.R.GotoM.M. & FurbergR.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity 12(1) 122. doi:10.1186/s12966-014-0159-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeitoY.BassettD.R. & ThompsonD.L. (2012). Evaluation of activity monitors in controlled and free-living environments. Medicine & Science in Sports & Exercise 44(4) 733741. PubMed ID: 21904249 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeitoY.HornbuckleL.M.ReidL.A. & CrouterS.E. (2017). Effect of ActiGraph’s low frequency extension for estimating steps and physical activity intensity. PLoS ONE 12(11) e0188242. doi:10.1371/journal.pone.0188242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FokkemaT.KooimanT.J.KrijnenW.P.Van Der SchansC.P. & De GrootM. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine & Science in Sports & Exercise 49(4) 793800. PubMed ID: 28319983 doi:10.1249/MSS.0000000000001146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FüzékiE.EngeroffT. & BanzerW. (2017). Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the national health and nutrition examination survey (NHANES). Sports Medicine 47(9) 17691793. doi:10.1007/s40279-017-0724-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HassonR.HallerJ.PoberD.StaudenmayerJ. & FreedsonP. (2009). Validity of the Omron HJ-112 pedometer during treadmill walking. Medicine & Science in Sports & Exercise 41(4) 805809. PubMed ID: 19276853 doi:10.1249/MSS.0b013e31818d9fc2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HickeyA.JohnD.SasakiJ.MaviliaM. & FreedsonP. (2016). Validity of activity monitor step detection is related to movement patterns. Journal of Physical Activity and Health 13(2) 145153. PubMed ID: 26107045 doi:10.1123/jpah.2015-0203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HolbrookE.BarreiraT. & KangM. (2009). Validity and reliability of Omron pedometers for prescribed and self-paced walking. Medicine & Science in Sports & Exercise 41(3) 670674. doi:10.1249/MSS.0b013e3181886095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HornbuckleL.M.KingsleyJ.D.KushnickM.R.MoffattR.J.HaymesE.M.MilesR.PantonL.B. (2016). Effects of a 12-month pedometer-based walking intervention in women of low socioeconomic status. Clinical Medicine Insights: Women’s Health 9(Suppl. 1) 7584. PubMed ID: 30639531 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HowardB.WinklerE.SethiP.CarsonV.RidgersN.D.SalmonJ.DunstanD.W. (2015). Associations of low-and high-intensity light activity with cardiometabolic biomarkers. Medicine & Science in Sports & Exercise 47(10) 20932101. PubMed ID: 25668400. doi:10.1249/MSS.0000000000000631

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ImbodenM.T.NelsonM.B.KaminskyL.A. & MontoyeA.H. (2018). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine 52(13) 844850. PubMed ID: 28483930 doi:10.1136/bjsports-2016-096990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JohnD.MortonA.ArguelloD.LydenK. & BassettD. (2018). “What is a step?” Differences in how a step is detected among three popular activity monitors that have impacted physical activity research. Sensors 18(4) 1206. doi:10.3390/s18041206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KarabulutM.CrouterS.E. & BassettD.R. (2005). Comparison of two waist-mounted and two ankle-mounted electronic pedometers. European Journal of Applied Physiology 95(4) 335343. PubMed ID: 16132120 doi:10.1007/s00421-005-0018-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingW.C.HsuJ.Y.BelleS.H.CourcoulasA.P.EidG.M.FlumD.R.SteffenK.J. (2012). Pre-to postoperative changes in physical activity: Report from the longitudinal assessment of bariatric surgery-2. Surgery for Obesity and Related Diseases 8(5) 522532. PubMed ID: 21944951 doi:10.1016/j.soard.2011.07.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KooimanT.J.DontjeM.L.SprengerS.R.KrijnenW.P.van der SchansC.P. & de GrootM. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Science Medicine and Rehabilitation 7(24) 111. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarshallS.J.LevyS.S.Tudor-LockeC.E.KolkhorstF.W.WootenK.M.JiM.AinsworthB.E. (2009). Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. American Journal of Preventive Medicine 36(5) 410415. PubMed ID: 19362695 doi:10.1016/j.amepre.2009.01.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Modus Health LLC. (2014). StepWatch 3 user’s manual. Washington, DC: Author.

  • NelsonM.B.KaminskyL.A.DickinD.C. & MontoyeA. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine & Science in Sports & Exercise 48(8) 16191628. PubMed ID: 27015387 doi:10.1249/MSS.0000000000000933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omron Healthcare Inc. (2007). Instruction manual pocket pedometer model HJ-720ITC. Lake Forest, IL: Author.

  • Omron Healthcare Inc. (2012). Instruction manual pedometer downloadable model HJ-722U. Lake Forest, IL: Author.

  • OrendurffM.S.SchoenJ.A.BernatzG.C. & SegalA.D. (2008). How humans walk: Bout duration, steps per bout, and rest duration. Journal of Rehabilitation Research and Development 45(7) 10771090. PubMed ID: 19165696 doi:10.1682/JRRD.2007.11.0197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RichardsonC.R.NewtonT.L.AbrahamJ.J.SenA.JimboM. & SwartzA.M. (2008). A meta-analysis of pedometer-based walking interventions and weight loss. Annals of Family Medicine 6(1) 6977. PubMed ID: 18195317 doi:10.1370/afm.761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchneiderP.L.CrouterS.E. & BassettD.R. (2004). Pedometer measures of free-living physical activity: Comparison of 13 models. Medicine & Science in Sports & Exercise 36(2) 331335. PubMed ID: 14767259 doi:10.1249/01.MSS.0000113486.60548.E9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SiegelP.Z.BrackbillR.M. & HeathG.W. (1995). The epidemiology of walking for exercise: Implications for promoting activity among sedentary groups. American Journal of Public Health 85(5) 706710. PubMed ID: 7733433 doi:10.2105/AJPH.85.5.706

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilcottN.A.BassettD.R.ThompsonD.L.FitzhughE.C. & SteevesJ.A. (2011). Evaluation of the Omron HJ-720ITC pedometer under free-living conditions. Medicine & Science in Sports & Exercise 43(9) 17911797. PubMed ID: 21311356 doi:10.1249/MSS.0b013e318212888c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SimpsonM.E.SerdulaM.GaluskaD.A.GillespieC.DonehooR.MaceraC. & MackK. (2003). Walking trends among US adults: The behavioral risk factor surveillance system, 1987–2000. American Journal of Preventive Medicine 25(2) 95100. PubMed ID: 12880875 doi:10.1016/S0749-3797(03)00112-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SwartzA.M.StrathS.J.BassettD.R.MooreJ.B.RedwineB.A.GroërM. & ThompsonD.L. (2003). Increasing daily walking improves glucose tolerance in overweight women. Preventive Medicine 37(4) 356362. PubMed ID: 14507493 doi:10.1016/S0091-7435(03)00144-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TothL.P.BassettD.R.CrouterS.E.OverstreetB.S.LaMunionS.R.ParkS.SpringerC.M. (2017). StepWatch accuracy during walking, running, and intermittent activities. Gait and Posture 52165170. PubMed ID: 27914311 doi:10.1016/j.gaitpost.2016.11.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TothL.P.ParkS.SpringerC.M.FeyerabendM.SteevesJ.A. & BassettD.R. (2018). Video-recorded validation of wearable step counters under free-living conditions. Medicine & Science in Sports & Exercise 50(6) 13151322. PubMed ID: 29381649 doi:10.1249/MSS.0000000000001569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TyoB.M.FitzhughE.C.BassettD.R.JohnD.FeitoY. & ThompsonD.L. (2011). Effects of body mass index and step rate on pedometer error in a free-living environment. Medicine & Science in Sports & Exercise 43(2) 350356. PubMed ID: 20543755 doi:10.1249/MSS.0b013e3181e9b133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WahlY.DükingP.DroszezA.WahlP. & MesterJ. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in Physiology 8725. PubMed ID: 29018355 doi:10.3389/fphys.2017.00725

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 87 87 23
Full Text Views 2 2 1
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar