Validity of Smartphone Applications at Measuring Steps: Does Wear Location Matter?

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Fifty-two participants walked on a treadmill at 4.8 km/h for 500 steps while wearing four Samsung Galaxy S4 smartphones on the arm, waist, pocket, and hand while each phone simultaneously ran five popular smartphone apps. Actual steps were measured using a hand tally device. Steps were recorded from each smartphone app and compared to the tally counter using repeated measures analysis of variance (ANOVA) tests, and equivalence testing. Of the 20 step measurements recorded (five apps at four locations), all but four (Accupedo at the arm, waist, and pocket; S-Health at the pocket) produced mean underestimations of step counts. ANOVAs showed significant differences between the phone at the hand location for all apps compared to the tally counter (p < .05); three apps had differences at the waist (p < .01), Runtastic had differences at the arm (p < .001), and no differences occurred between the pocket location and the hand tally counter for any of the apps (p > .05). The 90% confidence interval for all apps, except for G-Fit, fell within the equivalence zone for the phone in the pocket while the phone at the hand location included only S-Health within the equivalence zone. Using a Samsung Galaxy S4 smartphone to measure steps at a 4.8 km/h walking pace while carrying the phone in the hand may produce significant errors. However, using the S-Health app while carrying a phone in the pocket appears to provide the most accurate step count in a controlled environment.

Funk was with, and Gonzalez, Leyva, and Karabulut are with, the Department of Health and Human Performance, The University of Texas Rio Grande Valley, Brownsville, TX. Funk is now with Southern Utah University. Salazar and Martinez are with the School of Public Health, The University of Texas Health Sciences Center at Houston, TX. Bassett is with the Department of Kinesiology, Recreation, and Sport Studies, University of Tennessee, Knoxville, TN.

Funk (merrillfunk@suu.edu) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • BaiY.WelkG.J.NamY.H.LeeJ.A.LeeJ.M.KimY. . . . DixonP.M. (2015). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise 48(1) 151158. doi:10.1249/MSS.0000000000000727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassettD.R.Jr.AinsworthB.E.LeggettS.R.MathienC.A.MainJ.A.HunterD.C. & DuncanG.E. (1996). Accuracy of five electronic pedometers for measuring distance walked. Medicine & Science in Sports & Exercise 28(8) 10711077. PubMed ID: 8871919 doi:10.1097/00005768-199608000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassettD.R.Jr.TothL.P.LaMunionS.R. & CrouterS.E. (2017). Step counting: A review of measurement considerations and health-related applications. Sports Medicine 47(7) 13031315. PubMed ID: 28005190 doi:10.1007/s40279-016-0663-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BensonA.C.BruceL. & GordonB.A. (2015). Reliability and validity of a GPS-enabled iPhone “app” to measure physical activity. Journal of Sports Sciences 33(14) 14211428. PubMed ID: 25555093 doi:10.1080/02640414.2014.994659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BergmanR.J.SpellmanJ.W.HallM.E. & BergmanS.M. (2012). Is there a valid app for that? Validity of a free pedometer iPhone application. Journal of Physical Activity & Health 9(5) 670676. PubMed ID: 21946023 doi:10.1123/jpah.9.5.670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bort-RoigJ.GilsonN.D.Puig-RiberaA.ContrerasR.S. & TrostS.G. (2014). Measuring and influencing physical activity with smartphone technology: A systematic review. Sports Medicine 44(5) 671686. PubMed ID: 24497157 doi:10.1007/s40279-014-0142-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CaseM.A.BurwickH.A.VolppK.G. & PatelM.S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA 313(6) 625626. PubMed ID: 25668268 doi:10.1001/jama.2014.17841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CoughlinS.S.WhiteheadM.SheatsJ.Q.MastromonicoJ. & SmithS. (2016). A review of smartphone applications for promoting physical activity. Jacobs Journal of Community Medicine 2(1) 021. PubMed ID: 27034992

    • Search Google Scholar
    • Export Citation
  • CrouterS.E.SchneiderP.L.KarabulutM. & BassettD.R.Jr. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine & Science in Sports & Exercise 35(8) 14551460. PubMed ID: 12900704 doi:10.1249/01.MSS.0000078932.61440.A2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EvensonK.R.GotoM.M. & FurbergR.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity 12159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GordonB.A.BruceL. & BensonA.C. (2016). Physical activity intensity can be accurately monitored by smartphone global positioning system ‘app’. European Journal of Sport Science 16(5) 624631. PubMed ID: 26505223 doi:10.1080/17461391.2015.1105299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HallalP.C.AndersenL.B.BullF.C.GutholdR.HaskellW. & EkelundU. (2012). Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 380(9838) 247257. PubMed ID: 22818937 doi:10.1016/S0140-6736(12)60646-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeklerE.B.BumanM.P.GriecoL.RosenbergerM.WinterS.J.HaskellW. & KingA.C. (2015). Validation of physical activity tracking via Android smartphones compared to ActiGraph accelerometer: Laboratory-based and free-living validation studies. JMIR mHealth and uHealth 3(2) 36. PubMed ID: 25881662 doi:10.2196/mhealth.3505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KatzmarzykP.T. & MasonC. (2009). The physical activity transition. Journal of Physical Activity & Health 6(3) 269280. PubMed ID: 19564654 doi:10.1123/jpah.6.3.269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KonharnK.EungpinichpongW.PromdeeK.SangparaP.NongharnpitakS.MalilaW.KarawaJ. (2016). Validity and reliability of smartphone applications for the assessment of walking and running in normal-weight and overweight/obese young adults. Journal of Physical Activity & Health 13(12) 13331340. PubMed ID: 27633618 doi:10.1123/jpah.2015-0544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KumaharaH.AyabeM.IchibakaseM.TashimaA.ChiwataM.TakashiT. (2015). Validity of activity monitors worn at multiple nontraditional locations under controlled and free-living conditions in young adult women. Applied Physiology Nutrition and Metabolism 40(5) 448456. PubMed ID: 25832964 doi:10.1139/apnm-2014-0183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeongJ.Y. & WongJ.E. (2017). Accuracy of three Android-based pedometer applications in laboratory and free-living settings. Journal of Sports Sciences 35(1) 1421. PubMed ID: 26950687 doi:10.1080/02640414.2016.1154592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MajorM.J. & AlfordM. (2016). Validity of the iphone M7 motion co-processor as a pedometer for able-bodied ambulation. Journal of Sports Sciences 34(23) 21602164. PubMed ID: 27240005 doi:10.1080/02640414.2016.1189086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The Nielsen Company. (2016 November15). Millenials are top smartphone users. Retrieved from http://www.nielsen.com/us/en/insights/news/2016/millennials-are-top-smartphone-users.html

    • Export Citation
  • OrrK.HoweH.S.OmranJ.SmithK.A.PalmateerT.M.MaA.E. & FaulknerG. (2015). Validity of smartphone pedometer applications. BMC Research Notes 8733. PubMed ID: 26621351 doi:10.1186/s13104-015-1705-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchoenbornC.A.AdamsP.F. & PeregoyJ.A. (2013). Health behaviors of adults: United States, 2008–2010. Vital and Health Statistics. Series 10 2571184.PubMed ID: 25116426

    • Search Google Scholar
    • Export Citation
  • Tudor-LockeC.SissonS.B.LeeS.M.CraigC.L.PlotnikoffR.C. & BaumanA. (2006). Evaluation of quality of commercial pedometers. Canadian Journal of Public Health 97(1) S1015. PubMed ID: 16676833

    • Search Google Scholar
    • Export Citation
  • WrightS.P.Hall BrownT.S.CollierS.R. & SandbergK. (2017). How consumer physical activity monitors could transform human physiology research. American Journal of Physiology– Regulatory Integrative and Comparative Physiology 312(3) R358R367. PubMed ID: 30624984 doi:10.1152/ajpregu.00349.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 101 101 12
Full Text Views 2 2 2
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar