Identification of Apnea Events Using a Chest-Worn Monitor Compared to Laboratory-Based Polysomnography in Patients Suspected of Obstructive Sleep Apnea

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Obstructive sleep apnea (OSA) is an under-diagnosed risk factor for several adverse health outcomes. The gold standard diagnostic test for OSA is laboratory-based polysomnography (PSG). Portable sleep monitoring has been studied as an alternative for patients lacking access to PSG. This study aimed to assess the validity of the Zephyr BioHarness 3 (BH3), a chest-worn activity monitor that records movement, electrocardiography, and respiratory parameters, to identify apnea events in patients suspected of OSA. Patients (N = 18) underwent single-night laboratory-based PSG while wearing the BH3. PSG data were scored in 30-second epochs by PSG technicians. PSG and BH3 data were sampled and analyzed using three sets of features with a radial basis function support vector machine and three-layer neural networks: (1) apnea events were identified second by second using 5-second windows of raw BH3 data (sensitivity = 48.0 ± 8.7%, specificity = 75.6 ± 3.0%, accuracy = 74.4 ± 2.7%); (2) apnea events were identified second by second using mean, median, and variance values of 5-second windows of BH3 data (sensitivity = 54.7 ± 17.3%, specificity = 66.5 ± 12.1%, accuracy = 66.0 ± 10.9%); and (3) apnea events were identified second by second using phase-space transformation of BH3 data (sensitivity = 68.4 ± 9.0%, specificity = 81.5 ± 2.7%, accuracy = 80.9 ±2.5% for τ = 60; sensitivity = 64.0 ± 7.9%, specificity = 81.8 ± 2.5%, accuracy = 81.0 ± 2.3% for τ = 70). The BH3 may be useful for patients suspected of OSA without timely access to PSG.

Salazar is with the Department of Orthopaedic Surgery, UCSF Fresno, Fresno, CA. Gupta and Buman are with the College of Health Solutions, Arizona State University, Phoenix, AZ. Toledo, Wang, and Turaga are with the School of Arts, Media, and Engineering, Arizona State University, Phoenix, AZ. Parish is with the Division of Pulmonary Medicine, Mayo Clinic Hospital, Phoenix AZ.

Salazar (ed.salazar.md@gmail.com) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • BerryR.B.BudhirajaR.GottliebD.J.GozalD.IberC.KapurV.K.TangrediM.M. (2012). Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American academy of sleep medicine. Journal of Clinical Sleep Medicine 8(5) 597619. doi:10.5664/jcsm.2172

    • Search Google Scholar
    • Export Citation
  • BianchiW.DugasA.F.HsiehY.H.SaheedM.HillP.LindauerC.RothmanR.E. (2013). Revitalizing a vital sign: Improving detection of tachypnea at primary triage. Annals of Emergency Medicine 61(1) 3743. PubMed ID: 22738682 doi:10.1016/j.annemergmed.2012.05.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChungF.AbdullahH.R. & LiaoP. (2016). STOP-bang questionnaire: A practical approach to screen for obstructive sleep apnea. Chest 149(3) 631638. PubMed ID: 26378880 doi:10.1378/chest.15-0903 Retrieved from http://www.sciencedirect.com/science/article/pii/S0012369215000185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollopN.A.AndersonW.M.BoehleckeB.ClamanD.GoldbergR.GottliebD.J.Portable Monitoring Task Force of the American Academy of Sleep Medicine. (2007). Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. portable monitoring task force of the American academy of sleep medicine. Journal of Clinical Sleep Medicine 3(7) 737747. PubMed ID: 18198809

    • Search Google Scholar
    • Export Citation
  • CollopN.A.TracyS.L.KapurV.MehraR.KuhlmannD.FleishmanS.A. & OjileJ.M. (2011). Obstructive sleep apnea devices for Out-Of-Center (OOC) testing: Technology evaluation. Journal of Clinical Sleep Medicine 7(5) 531548. doi:10.5664/JCSM.1328

    • Search Google Scholar
    • Export Citation
  • CookseyJ.A. & BalachandranJ.S. (2016). Portable monitoring for the diagnosis of OSA. Chest 149(4) 10741081. PubMed ID: 26539918 doi:10.1378/chest.15-1076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CortesC. & VapnikV. (1995). Support-vector networks. Machine Learning 20(3) 273297.

  • DragerL.F.TogeiroS.M.PolotskyV.Y. & Lorenzi-FilhoG. (2013). Obstructive sleep apnea: A cardiometabolic risk in obesity and the metabolic syndrome. Journal of the American College of Cardiology 62(7) 569576. PubMed ID: 23770180 doi:10.1016/j.jacc.2013.05.045 Retrieved from http://www.sciencedirect.com.ezproxy2.library.arizona.edu/science/article/pii/S0735109713022481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FerberR.MillmanR.CoppolaM.FleethamJ.MurrayC.F.IberC.SandersM. (1994). Portable recording in the assessment of obstructive sleep apnea. ASDA standards of practice. Sleep 17(4) 378392. PubMed ID: 7973323 doi:10.1093/sleep/17.4.378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlemonsW.W.DouglasN.J.KunaS.T.RodensteinD.O. & WheatleyJ. (2004). Access to diagnosis and treatment of patients with suspected sleep apnea. American Journal of Respiratory and Critical Care Medicine 169(6) 668672. PubMed ID: 15003950 doi:10.1164/rccm.200308-1124PP

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HastieT.TibshiraniR. & FriedmanJ.H. (2009). The elements of statistical learning: Data mining inference and prediction (Vol. 27th ed.). New York, NY: Springer. Retrieved from http://ucsf.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB50i1Av6mrxVcjB65Z95LVHkRYvIoIi9VKabCKCbsFtD_57MyYpxSrkNiSEkJnJZGa-D6AqR3n2yyZwrizjDVe5KpnUQjrHyEuda0zUKY3Nydfj6uFJPE-xVOc-tsasdGdHb83Hujd5GyxxO-m_gRorqWQyE7suKJM0gZ4LK6cv8b6hq6oLz_cd4Kao0_86JHV_5iItlDPhzsBz53sDYk8UioAZFeVYDoY73vBQk0PoGWxbOIId06aw5ykmv1I4iLQNJGhxCvt3a6jWLoU-Pjc9WvMxXLlbQ4yvKO_IwpIuCufvJBBMvJ7AcDJ-vLnNcBOz8P8zUxjEIcpMNYCkXbTmFIgWDS3cEMYwqpVSlS0L23Cr5kKwWp_B4O81zv8TXEDfJ1rwd-ISkuXnygz9cXwDO22Lpg

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KatoM.AdachiT.KoshinoY. & SomersV.K. (2009). Obstructive sleep apnea and cardiovascular disease. Circulation Journal 73(8) 13631370. PubMed ID: 19564701 doi:10.1253/circj.CJ-09-0364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingS. & CuellarN. (2016). Obstructive sleep apnea as an independent stroke risk factor: A review of the evidence, stroke prevention guidelines, and implications for neuroscience nursing practice. The Journal of Neuroscience Nursing 48(3) 133142. doi:10.1097/JNN.0000000000000196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParkJ.G.RamarK. & OlsonE.J. (2011). Updates on definition, consequences, and management of obstructive sleep apnea. Mayo Clinic Proceedings 86(6) 549554. doi:10.4065/mcp.2010.0810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PunjabiN.M. (2008). The epidemiology of adult obstructive sleep apnea. Proceedings of the American Thoracic Society 5(2) 136143. PubMed ID: 18250205 doi:10.1513/pats.200709-155MG

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RonaldJ.DelaiveK.RoosL.ManfredaJ.H. & KrygerM.H. (1998). Obstructive sleep apnea patients use more health care resources ten years prior to diagnosis. Sleep Research Online: SRO 1(1) 7174. PubMed ID: 11382859

    • Search Google Scholar
    • Export Citation
  • SelimB.WonC. & YaggiH.K. (2010). Cardiovascular consequences of sleep apnea. Clinics in Chest Medicine 31(2) 203220. PubMed ID: 20488282 doi:10.1016/j.ccm.2010.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaG.E.VanaK.D.GoodwinJ.L.SherrillD.L. & QuanS.F. (2011). Identification of patients with sleep disordered breathing: Comparing the four-variable screening tool, STOP, STOP-bang, and Epworth sleepiness scales. Journal of Clinical Sleep Medicine 7(5) 467472. doi:10.5664/JCSM.1308

    • Search Google Scholar
    • Export Citation
  • SprottJ.C. (2003). Chaos and time-series analysis (1st ed.). Oxford, UK: Oxford University Press.

  • StergiouN. (2004). Innovative analyses of human movement. Champaign, IL: Human Kinetics. Retrieved from http://hdl.handle.net/2027/mdp.39015056935920

    • Search Google Scholar
    • Export Citation
  • YaggiH.K. & StrohlK.P. (2010). Adult obstructive sleep apnea/hypopnea syndrome: Definitions, risk factors, and pathogenesis. Clinics in Chest Medicine 31(2) 179186. PubMed ID: 20488280 doi:10.1016/j.ccm.2010.02.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YoungT.EvansL.FinnL. & PaltaM. (1997). Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20(9) 705706. PubMed ID: 9406321 doi:10.1093/sleep/20.9.705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhangM.LiL.FowlerD.ZhaoZ.WeiD.ZhangY. & BurkeA. (2013). Causes of sudden death in patients with obstructive sleep apnea. Journal of Forensic Sciences 58(5) 11711174. PubMed ID: 23865847 doi:10.1111/1556-4029.12220

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 40 40 9
Full Text Views 0 0 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar